Insights from the first chromosome-level genome assembly of the alpine gentian Gentiana straminea Maxim.

Author:

Kelsang Gyab Ala12,Ni Lianghong1,Zhao Zhili1ORCID

Affiliation:

1. School of Pharmacy, Shanghai University of Traditional Chinese Medicine , Shanghai 201203 , China

2. Mentseekhang, Traditional Tibetan Hospital , Lhasa 850000 , China

Abstract

Abstract Gentiana straminea Maxim. is a perennial herb and mainly distributed in the Qinghai-Tibetan Plateau. To adapt to the extreme environment, it has developed particular morphological, physiological, and genetic structures. Also, rich in iridoids, it is one of the original plants of traditional Chinese herb ‘Qinjiao’. Herein, we present its first chromosome-level genome sequence assembly and compare it with the genomes of other Gentiana species to facilitate the analysis of genomic characteristics. The assembled genome size of G. straminea was 1.25 Gb, with a contig N50 of 7.5 Mb. A total of 96.08% of the genome sequences was anchored on 13 pseudochromosomes, with a scaffold N50 of 92.70 Mb. A total of 54,310 protein-coding genes were predicted, 80.25% of which were functionally annotated. Comparative genomic analyses indicated that G. straminea experienced two whole-genome duplication events after the γ whole-genome triplication with other eudicots, and it diverged from other Gentiana species at ~3.2 Mya. A total of 142 enzyme-coding genes related to iridoid biosynthesis were identified in its genome. Additionally, we identified differences in the number and expression patterns of iridoid biosynthetic pathway genes in G. straminea compared with two other Gentiana species by integrating whole-genome sequence and transcriptomic analyses.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Reference119 articles.

1. A review of recent studies of plant systematics and evolution in China;Ge;Biodiv. Sci.,2022

2. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana;The Arabidopsis Genome Initiative;Nature,2000

3. Genus Gentiana;He,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3