Transplantation of Cold-Stimulated Subcutaneous Adipose Tissue Improves Fat Retention and Recipient Metabolism

Author:

Luo Yucheng,Ma Wenhui,Cheng Shaowen,Yuan Tao,Li Jingyi,Hao Huiqin,Liu Kai,Zeng Minxi,Pan Yong

Abstract

Abstract Background Induction of beige fat for grafting is an emerging transplantation strategy. However, safety concerns associated with pharmaceutical interventions limit its wider application. Moreover, because beige fat is a special type of fat with strong metabolic functions, its effect on the metabolism of recipients after grafting has not been explored in the plastic surgery domain. Objectives The aim of this study was to explore whether cold-induced inguinal white adipose tissue (iWAT) transplantation has a higher retention rate and beneficial effects on recipient metabolism. Methods C57/BL6 mice were subjected to cold stimulation for 48 hours to induce the browning of iWAT and harvested immediately. Subsequently, each mouse received a transplant of 0.2 mL cold-induced iWAT or normal iWAT. Fat grafts and recipients' iWAT, epididymal adipose tissue, and brown adipose tissue were harvested at 8 weeks after operation. Immunofluorescence staining, real-time polymerase chain reaction, and western blot were used for histological and molecular analysis. Results Cold-induced iWAT grafting had a higher mean [standard error of the mean] retention rate (67.33% [1.74%] vs 55.83% [2.94%], P < .01) and more satisfactory structural integrity than normal iWAT. Histological changes identified improved adipose tissue homeostasis after cold challenge, including abundant smaller adipocytes, higher levels of adipogenesis, angiogenesis, and proliferation, but lower levels of fibrosis. More importantly, cold-induced iWAT grafting suppressed the inflammation of epididymal adipose tissue caused by conventional fat grafting, and activated the glucose metabolism and thermogenic activity of recipients' adipose tissues. Conclusions Cold-induced iWAT grafting is an effective nonpharmacological intervention strategy to improve the retention rate and homeostasis of grafts. Furthermore, it improves the adverse effects caused by traditional fat grafting, while also conferring metabolic benefits.

Funder

Guangdong Basic and Applied Basic Research Foundation

Medical Scientific Research Foundation

Scientific Research Foundation

Shenzhen Medical Research Fund

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3