Scaling parameter of the lethal effect of mammalian cells based on radiation-induced OH radicals: effectiveness of direct action in radiation therapy

Author:

Kusumoto Tamon1,Ogawara Ryo2,Igawa Kazuyo3,Baba Kentaro4,Konishi Teruaki1,Furusawa Yoshiya1,Kodaira Satoshi1

Affiliation:

1. National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, 263-8555 Chiba, Japan

2. Advanced Research Center for Beam Science, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

3. Neutron Therapy Research Center, Okayama University, 2-5-1 Shikata, Kita-ku, 700-8558 Okayama, Japan

4. Graduate School of Biomedical Science and Engineering, Hokkaido University, Kita-12 Nishi-5, Kita-ku, 080-0808 Hokkaido, Japan

Abstract

ABSTRACT We have been studying the effectiveness of direct action, which induces clustered DNA damage leading to cell killing, relative to indirect action. Here a new criterion Direct Ation-Based Biological Effectiveness (DABBLE) is proposed to understand the contribution of direct action for cell killing induced by C ions. DABBLE is defined as the ratio of direct action to indirect action. To derive this ratio, we describe survival curves of mammalian cells as a function of the number of OH radicals produced 1 ps and 100 ns after irradiation, instead of the absorbed dose. By comparing values on the vertical axis of the survival curves at a certain number of OH radicals produced, we successfully discriminate the contribution of direct action induced by C ions from that of indirect action. DABBLE increases monotonically with increasing linear energy transfer (LET) up to 140 keV/μm and then drops, when the survival curves are described by the number of OH radicals 1 ps after irradiation. The trend of DABBLE is in agreement with that of relative biological effectiveness (RBE) of indirect action. In comparison, the value of DABBLE increases monotonically with LET, when the survival curves are described by the number of OH radicals 100 ns after irradiation. This finding implies that the effectiveness of C ion therapy for cancer depends on the contribution of direct action and we can follow the contribution of direct action over time in the chemical phase.

Funder

JSPS KAKANHI

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Radiology, Nuclear Medicine and imaging,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3