Recent advances in radiobiology with respect to pleiotropic aspects of tissue reaction

Author:

Suzuki Keiji12,Amrenova Aidana12,Mitsutake Norisato12

Affiliation:

1. Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan

2. Life Sciences and Radiation Research, Graduate School of Biomedical Sciences, Nagasaki University. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan

Abstract

ABSTRACT DNA double-strand breaks (DSBs) induced by ionizing radiation are the major cause of cell death, leading to tissue/organ injuries, which is a fundamental mechanism underlying the development of tissue reaction. Since unscheduled senescence, predominantly induced among epithelial tissues/organs, is one of the major modes of cell death in response to radiation exposure, its role in tissue reaction has been extensively studied, and it has become clear that senescence-mediated secretion of soluble factors is an indispensable component of the manifestation of tissue reaction. Recently, an unexpected link between cytoplasmic DSBs and innate immunity was discovered. The activation of cyclic GMP-AMP (cGAMP) synthase (cGAS) results in the stimulation of the cGAS–stimulator of interferon genes (STING) pathway, which has been shown to regulate the transactivation of a variety of secretory factors that are the same as those secreted from senescent cells. Furthermore, it has been proven that cGAS–STING pathway also mediates execution of the senescence process by itself. Hence, an autocrine/paracrine feedback loop has been discussed in previous literature in relation to its effect on the tissue microenvironment. As the tissue microenvironment plays a crucial role in cancer development, tissue reaction could be involved in the late health effects caused by radiation exposure. In this paper, the novel findings in radiation biology, which should provide a better understanding of the mechanisms underlying radiation-induced carcinogenesis, are overviewed.

Funder

Program of the Network-type Joint Usage/Research Center for Radiation Disaster Medical Science of Hiroshima University, Nagasaki University, and Fukushima Medical University

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Radiology Nuclear Medicine and imaging,Radiation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of the evidence of radioprotective potential of creatine and arginine as dietary supplements;International Journal of Radiation Biology;2024-04-29

2. Radio-Protective effect of aminocaproic acid in human spermatozoa;International Journal of Radiation Biology;2022-01-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3