Evaluation of the redox state in mouse organs following radon inhalation

Author:

Kataoka Takahiro1,Kanzaki Norie2,Sakoda Akihiro2,Shuto Hina1,Yano Junki1,Naoe Shota1,Tanaka Hiroshi2,Hanamoto Katsumi1,Terato Hiroaki3,Mitsunobu Fumihiro4,Yamaoka Kiyonori1

Affiliation:

1. Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan

2. Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan

3. Advanced Science Research Center, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan

4. Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan

Abstract

Abstract Radon inhalation activates antioxidative functions in mouse organs, thereby contributing to inhibition of oxidative stress-induced damage. However, the specific redox state of each organ after radon inhalation has not been reported. Therefore, in this study, we evaluated the redox state of various organs in mice following radon inhalation at concentrations of 2 or 20 kBq/m3 for 1, 3 or 10 days. Scatter plots were used to evaluate the relationship between antioxidative function and oxidative stress by principal component analysis (PCA) of data from control mice subjected to sham inhalation. The results of principal component (PC) 1 showed that the liver and kidney had high antioxidant capacity; the results of PC2 showed that the brain, pancreas and stomach had low antioxidant capacities and low lipid peroxide (LPO) content, whereas the lungs, heart, small intestine and large intestine had high LPO content but low antioxidant capacities. Furthermore, using the PCA of each obtained cluster, we observed altered correlation coefficients related to glutathione, hydrogen peroxide and LPO for all groups following radon inhalation. Correlation coefficients related to superoxide dismutase in organs with a low antioxidant capacity were also changed. These findings suggested that radon inhalation could alter the redox state in organs; however, its characteristics were dependent on the total antioxidant capacity of the organs as well as the radon concentration and inhalation time. The insights obtained from this study could be useful for developing therapeutic strategies targeting individual organs.

Funder

JAEA Nuclear Energy S&T and Human Resource Development

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Radiology, Nuclear Medicine and imaging,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3