Forecasting dynamic body weight of nonrestrained pigs from images using an RGB-D sensor camera

Author:

Yu Haipeng1,Lee Kiho2ORCID,Morota Gota13ORCID

Affiliation:

1. Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

2. Division of Animal Sciences, University of Missouri, Columbia, MO, USA

3. Center for Advanced Innovation in Agriculture, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

Abstract

Abstract Average daily gain is an indicator of the growth rate, feed efficiency, and current health status of livestock species including pigs. Continuous monitoring of daily gain in pigs aids producers to optimize their growth performance while ensuring animal welfare and sustainability, such as reducing stress reactions and feed waste. Computer vision has been used to predict live body weight from video images without direct handling of the pig. In most studies, videos were taken while pigs were immobilized at a weighing station or feeding area to facilitate data collection. An alternative approach is to capture videos while pigs are allowed to move freely within their own housing environment, which can be easily applied to the production system as no special imaging station needs to be established. The objective of this study was to establish a computer vision system by collecting RGB-D videos to capture top-view red, green, and blue (RGB) and depth images of nonrestrained, growing pigs to predict their body weight over time. Over a period of 38 d, eight growers were video recorded for approximately 3 min/d, at the rate of six frames per second, and manually weighed using an electronic scale. An image-processing pipeline in Python using OpenCV was developed to process the images. Specifically, each pig within the RGB frame was segmented by a thresholding algorithm, and the contour of the pig was identified to extract its length and width. The height of a pig was estimated from the depth images captured by the infrared depth sensor. Quality control included removing pigs that were touching the fence and sitting, as well as those showing extremely distorted shape or motion blur owing to their frequent movement. Fitting all of the morphological image descriptors simultaneously in linear mixed models yielded prediction coefficients of determination of 0.72–0.98, 0.65–0.95, 0.51–0.94, and 0.49–0.93 for 1-, 2-, 3-, and 4-d ahead forecasting, respectively, of body weight in time series cross-validation. Based on the results, we conclude that our RGB-D sensor-based imaging system coupled with the Python image-processing pipeline could potentially provide an effective approach to predict the live body weight of nonrestrained pigs from images.

Funder

USDA-NIFA

Publisher

Oxford University Press (OUP)

Subject

General Veterinary,Animal Science and Zoology

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3