Overcomplete tomography: a novel approach to imaging

Author:

Turunçtur Buse1ORCID,Valentine Andrew12ORCID,Sambridge Malcolm1ORCID

Affiliation:

1. Research School of Earth Sciences, The Australian National University , Canberra ACT 2601 , Australia

2. Department of Earth Sciences, Durham University , Durham, DH1 3LE , UK

Abstract

Abstract Regularized least-squares tomography offers a straightforward and efficient imaging method and has seen extensive application across various fields. However, it has a few drawbacks, such as (i) the regularization imposed during the inversion tends to give a smooth solution, which will fail to reconstruct a multi-scale model well or detect sharp discontinuities, (ii) it requires finding optimum control parameters, and (iii) it does not produce a sparse solution. This paper introduces ‘overcomplete tomography’, a novel imaging framework that allows high-resolution recovery with relatively few data points. We express our image in terms of an overcomplete basis, allowing the representation of a wide range of features and characteristics. Following the insight of ‘compressive sensing’, we regularize our inversion by imposing a penalty on the L1 norm of the recovered model, obtaining an image that is sparse relative to the overcomplete basis. We demonstrate our method with a synthetic and a real X-ray tomography example. Our experiments indicate that we can reconstruct a multi-scale model from only a few observations. The approach may also assist interpretation, allowing images to be decomposed into (for example) ‘global’ and ‘local’ structures. The framework presented here can find application across a wide range of fields, including engineering, medical and geophysical tomography.

Funder

Commonwealth Scientific and Industrial Research Organisation

Australian National University

Australian Research Council

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3