A deep neural network based reverse radio spectrogram search algorithm

Author:

Ma Peter Xiangyuan1ORCID,Croft Steve234,Lintott Chris4ORCID,Siemion Andrew P V23456

Affiliation:

1. Department of Mathematics, University of Toronto , 40 St. George Street, Toronto, ON M5S 2E4 , Canada

2. Radio Astronomy Laboratory , 501 Campbell Hall, University of California, Berkeley, CA 94720 , USA

3. SETI Institute , Mountain View, CA 94043 , USA

4. Department of Physics, University of Oxford , Denys Wilkinson Building, Keble Road, Oxford OX1 3RH , UK

5. Jodrell Bank Centre for Astrophysics, The University of Manchester , Manchester M13 9PL , UK

6. University of Malta, Institute of Space Sciences and Astronomy , L-Università ta' Malta Msida, MSD 2080 , Malta

Abstract

Abstract Modern radio astronomy instruments generate vast amounts of data, and the increasingly challenging radio frequency interference (RFI) environment necessitates ever-more sophisticated RFI rejection algorithms. The ‘needle in a haystack’ nature of searches for transients and technosignatures requires us to develop methods that can determine whether a signal of interest has unique properties, or is a part of some larger set of pernicious RFI. In the past, this vetting has required onerous manual inspection of very large numbers of signals. In this paper, we present a fast and modular deep learning algorithm to search for lookalike signals of interest in radio spectrogram data. First, we trained a β-variational autoencoder on signals returned by an energy detection algorithm. We then adapted a positional embedding layer from classical transformer architecture to a embed additional metadata, which we demonstrate using a frequency-based embedding. Next we used the encoder component of the β-variational autoencoder to extract features from small (∼715 Hz, with a resolution of 2.79 Hz per frequency bin) windows in the radio spectrogram. We used our algorithm to conduct a search for a given query (encoded signal of interest) on a set of signals (encoded features of searched items) to produce the top candidates with similar features. We successfully demonstrate that the algorithm retrieves signals with similar appearance, given only the original radio spectrogram data. This algorithm can be used to improve the efficiency of vetting signals of interest in technosignature searches, but could also be applied to a wider variety of searches for ‘lookalike’ signals in large astronomical data sets.

Funder

Alfred P. Sloan Foundation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3