Reconstructing robust background integral field unit spectra using machine learning

Author:

Rhea Carter Lee12,Hlavacek-Larrondo Julie13,Giroux Justine4,Thilloy Auriane13,Choi Hyunseop135,Rousseau-Nepton Laurie678,Gendron-Marsolais Marie-Lou9,Pasquato Mario13510ORCID,Prunet Simon11

Affiliation:

1. Département de Physique, Université de Montréal , Succ. Centre-Ville, Montréal, Québec, H3C 3J7 , Canada

2. Centre de Recherche en Astrophysique du Québec (CRAQ) , Québec, QC, G1V 0A6 , Canada

3. Ciela, Computation and Astrophysical Data Analysis Institute , Montreal, Quebec , Canada

4. Département de Vision Numérique, Université Laval , Québec, QC, H3A 1B9 , Canada

5. Mila – Quebec Artificial Intelligence Institute , Montreal, Quebec , Canada

6. Canada-France-Hawaii Telescope , 65-1238 Mamalahoa Hwy, Kamuela, Hawaii 96743 , USA

7. David A. Dunlap Department of Astronomy & Astrophysics, University of Toronto , 50 St George Street, Toronto, ON M5S 3H4 , Canada

8. Dunlap Institute for Astronomy & Astrophysics, University of Toronto , 50 St George Street, Toronto, ON M5S 3H4 , Canada

9. Instituto de Astrofísica de Andalucía, IAA-CSIC , Apartado 3004, E-18080 Granada, España

10. Physics and Astronomy Department Galileo Galilei, University of Padova , Vicolo dell’Osservatorio 3, I-35122, Padova , Italy

11. Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange , France

Abstract

ABSTRACT In astronomy, spectroscopy consists of observing an astrophysical source and extracting its spectrum of electromagnetic radiation. Once extracted, a model is fit to the spectra to measure the observables, leading to an understanding of the underlying physics of the emission mechanism. One crucial, and often overlooked, aspect of this model is the background emission, which contains foreground and background astrophysical sources, intervening atmospheric emission, and artefacts related to the instrument such as noise. This paper proposes an algorithmic approach to constructing a background model for SITELLE observations using statistical tools and supervised machine learning algorithms. SITELLE is an imaging Fourier transform spectrometer located at the Canada-France-Hawaii Telescope, which produces a three-dimensional data cube containing the position of the emission (two dimensions) and the spectrum of the emission. SITELLE has a wide field of view (11 arcmin × 11 arcmin), which makes the background emission particularly challenging to model. We apply a segmentation algorithm implemented in photutils to divide the data cube into background and source spaxels. After applying a principal component analysis (PCA) on the background spaxels, we train an artificial neural network to interpolate from the background to the source spaxels in the PCA coefficient space, which allows us to generate a local background model over the entire data cube. We highlight the performance of this methodology by applying it to SITELLE observations obtained of a Star-formation, Ionized Gas and Nebular Abundances Legacy Survey galaxy, NGC 4449, and the Perseus galaxy cluster of galaxies, NGC 1275. We discuss the physical interpretation of the principal components and noise reduction in the resulting PCA-based reconstructions. Additionally, we compare the fit results using our new background modelling approach with standard methods used in the literature and find that our method better captures the emission from H ii regions in NGC 4449 and the faint emission regions in NGC 1275. These methods also demonstrate that the background does change as a function of the position of the data cube. While the approach is applied explicitly to SITELLE data in this study, we argue that it can be readily adapted to any integral field unit style data, enabling the user to obtain more robust measurements on the flux of the emission lines.

Funder

Université de Montréal

Mitacs

Horizon 2020

National Science Foundation

Natural Sciences and Engineering Research Council of Canada

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3