An image processing approach to identify solar plages observed at 393.37 nm by the Kodaikanal solar observatory

Author:

Gharat Sarvesh1ORCID,Bose Bhaskar2,Borthakur Abhimanyu3,Mazumder Rakesh4

Affiliation:

1. Centre for Machine Intelligence and Data Science, Indian Institute of Technology Bombay , 400076 Mumbai, India

2. Smart Mobility Group, Tata Consultancy Services , 560067 Bangalore, India

3. Department of Electronics and Communication Engineering, Manipal Institute of Technology , 576104 Karnataka, India

4. Birla Industrial and Technological Museum , National Council of Science Museums, Ministry of Culture, Government of India, Kolkata 700019, India

Abstract

Abstract Solar plages, which are bright regions on the Sun’s surface, are an important indicator of solar activity. In this study, we propose an automated algorithm for identifying solar plages in Ca-K wavelength solar data obtained from the Kodaikanal Solar Observatory. The algorithm successfully annotates all visually identifiable plages in an image and outputs the corresponding calculated plage index. We perform a time series analysis of the plage index (rolling mean) across multiple solar cycles to test the algorithm’s reliability and robustness. The results show a strong correlation between the calculated plage index and those reported in a previous study. The correlation coefficients obtained for all the solar cycles are higher than 0.90, indicating the reliability of the model. We also suggest that adjusting the hyperparameters appropriately for a specific image using our web-based app can increase the model’s efficiency. The algorithm has been deployed on the Streamlit Community Cloud platform, where users can upload images and customize the hyperparameters for desired results. The input data used in this study is freely available from the KSO data archive, and the code and the generated data are publicly available on our GitHub repository. Our proposed algorithm provides an efficient and reliable method for identifying solar plages, which can aid the study of solar activity and its impact on the Earth’s climate, technology, and space weather.

Funder

Indian Institute of Astrophysics, Bangalore, India

National Knowledge Network

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3