The verification of periodicity with the use of recurrent neural networks

Author:

Miller N1ORCID,Lucas P W1ORCID,Sun Y2,Guo Z1345,Cooper W J16ORCID,Morris C1ORCID

Affiliation:

1. Centre for Astrophysics Research, University of Hertfordshire , College Lane, Hatfield, Hertfordshire AL10 9AB , UK

2. Centre for Computer Science and Robotics Research, University of Hertfordshire , College Lane, Hatfield, Hertfordshire AL10 9AB , UK

3. Instituto de Física y Astronomía, Universidad de Valparaíso , ave. Gran Bretaña, 1111, Casilla 5030, Valparaíso , Chile

4. Núcleo Milenio de Formación Planetaria (NPF) , ave. Gran Bretaña, 1111, Casilla 5030, Valparaíso , Chile

5. Departamento de Física, Universidad Tecnicá Federico Santa María , Avenida España 1680, Valparaíso , Chile

6. Istituto Nazionale di Astrofisica, Osservatorio Astrofisico di Torino , Strada Osservatorio 20, I-10025 Pino Torinese , Italy

Abstract

Abstract The ability to automatically and robustly self-verify periodicity present in time-series astronomical data is becoming more important as data sets rapidly increase in size. The age of large astronomical surveys has rendered manual inspection of time-series data less practical. Previous efforts in generating a false alarm probability to verify the periodicity of stars have been aimed towards the analysis of a constructed periodogram. However, these methods feature correlations with features that do not pertain to periodicity, such as light-curve shape, slow trends, and stochastic variability. The common assumption that photometric errors are Gaussian and well determined is also a limitation of analytic methods. We present a novel machine learning based technique which directly analyses the phase-folded light curve for its false alarm probability. We show that the results of this method are largely insensitive to the shape of the light curve, and we establish minimum values for the number of data points and the amplitude to noise ratio.

Funder

University of Hertfordshire

STFC

ANID

FONDECYT

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3