Sea Snacks from DNA Tracks: Using DNA Metabarcoding to Characterize the Diet of Green Turtles (Chelonia Mydas)

Author:

Sarkis Christine M1,Hoenig Brandon D2ORCID,Seney Erin E13,Gaspar Stephanie A1,Forsman Anna M14ORCID

Affiliation:

1. Department of Biology, University of Central Florida , Orlando, FL , USA

2. Department of Biological Sciences, University of Pittsburgh , Pittsburgh , PA 15260, USA

3. Marine Turtle Research Group, Department of Biology, University of Central Florida , Orlando, FL , USA

4. Genomics & Bioinformatics Cluster, University of Central Florida , Orlando, FL 32816 , USA

Abstract

Synopsis The green turtle (Chelonia mydas) is a circumglobal species with a wide dietary breadth that varies among regions and life history stages. Comprehensive understanding of foraging ecology over space and time is critical to inform conservation and management of this species and its habitats. Here, we used DNA metabarcoding to test candidate primer sets with 39 gut content homogenates from stranded green turtles (FL, USA) to identify primer sets that maximize detection of food items and specificity of taxonomic classifications. We tested six existing universal primer sets to detect plants, animals, and eukaryotes more broadly (CO1, 18SV1-V3, 18SV4, rbcL, UPA, ITS). The CO1 and 18SV4 primer sets produced the greatest number of dietary amplicon sequence variants (ASVs) and unique taxonomic classifications, and they were the only primer sets to amplify taxa from all three kingdoms relevant to green turtle diet (Animalia, Chromista, and Plantae). Even though the majority of CO1-derived reads were of host origin (>90%), this primer set still produced the largest number of dietary ASVs classified to species among the six primer sets. However, because the CO1 primer set failed to detect both vascular plants and green algae, we do not recommend the use of this primer set on its own to characterize green turtle diet. Instead, our findings support previous research highlighting the utility of using multiple primer sets, specifically targeting CO1 and the V4 region of the 18S gene, as doing so will provide the most comprehensive understanding of green turtle diet. More generally, our results highlight the importance of primer and loci selection and the need to validate primer sets against the study system of interest. The addition of DNA metabarcoding with optimized primer sets to the sea turtle researcher's toolbox will both increase our understanding of foraging ecology and better inform science-based conservation and ecosystem management.

Funder

University of Central Florida

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3