Invasive Widow Spiders Perform Differently at Low Temperatures from Conspecifics from the Native Range

Author:

Mowery Monica A1ORCID,Anthony Susan E2,Dorison Alexandra N1,Mason Andrew C1,Andrade Maydianne C B1

Affiliation:

1. Department of Biological Sciences, University of Toronto Scarborough , Scarborough, ON M1C 1A4 , Canada

2. Department of Biology, University of Western Ontario , 1151 Richmond St. N, London, ON N6A 5B7 , Canada

Abstract

Abstract Temperature challenges are one of the leading abiotic causes of success or failure of non-native species in a novel environment, and this is particularly true for low temperatures. Establishing and reproducing in a novel thermal environment can alter survival, behavior, and traits related to fitness. It has been proposed that plasticity or adaptation of thermal tolerance may allow an introduced species to thrive, or that successful invaders may be those with a thermal breadth in their native habitat that encompasses their new environment. Here, we tested these hypotheses using native and invasive populations of Australian redback spiders (Latrodectus hasselti). We measured how exposure to temperatures common to invasive and native range habitats (exposure to 15 and 25°C, respectively) affected behavioral and life-history traits and trade-offs that may underlie fitness in an invasive population detected in 1995 in Japan and a native population from Australia. We found that the critical thermal minimum (CTmin) was higher in the invasive population from Japan than in the native population, but critical thermal maximum (CTmax) did not differ between populations. Compared to the invasive population, eggs from the native population had a longer development time and lower hatching success at 15°C. Both populations performed equally well at 25°C, as measured by egg development time and hatching success. Invasive juveniles tested at 15°C were faster to explore a novel environment and bolder compared to those tested at 25°C. In comparison, the native population showed faster average exploration, with no differences in boldness or exploration at the two development or testing temperatures. Overall, L. hasselti from Japan maintained hatching success and development across a wider temperature range than the native population, indicating greater thermal breadth and higher behavioral plasticity. These results support the importance of plasticity in thermal tolerance and behavior for a successful invasion under novel environmental temperatures.

Funder

Natural Sciences and Engineering Research Council of Canada

Canadian Foundation for Innovation

Western University

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3