Strategies of Invertebrate Osmoregulation: An Evolutionary Blueprint for Transmuting into Fresh Water from the Sea

Author:

McNamara John Campbell12ORCID,Freire Carolina Arruda3

Affiliation:

1. Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto 14040-901, SP, Brazil

2. Centro de Biologia Marinha, Universidade de São Paulo , São Sebastião 11600-000, SP, Brazil

3. Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná , Curitiba 81531-980, PR, Brazil

Abstract

Synopsis Early marine invertebrates like the Branchiopoda began their sojourn into dilute media some 500 million years ago in the Middle Cambrian. Others like the Mollusca, Annelida, and many crustacean taxa have followed, accompanying major marine transgressions and regressions, shifting landmasses, orogenies, and glaciations. In adapting to these events and new habitats, such invertebrates acquired novel physiological abilities that attenuate the ion loss and water gain that constitute severe challenges to life in dilute media. Among these taxon-specific adaptations, selected from the subcellular to organismal levels of organization, and constituting a feasible evolutionary blueprint for invading freshwater, are reduced body permeability and surface (S) to volume (V) ratios, lowered osmotic concentrations, increased osmotic gradients, increased surface areas of interface epithelia, relocation of membrane proteins in ion-transporting cells, and augmented transport enzyme abundance, activity, and affinity. We examine these adaptations in taxa that have penetrated into freshwater, revealing diversified modifications, a consequence of distinct body plans, morpho-physiological resources, and occupation routes. Contingent on life history and reproductive strategy, numerous patterns of osmotic regulation have emerged, including intracellular isosmotic regulation in weak hyper-regulators and well-developed anisosmotic extracellular regulation in strong hyper-regulators, likely reflecting inertial adaptations to early life in an estuarine environment. In this review, we address osmoregulation in those freshwater invertebrate lineages that have successfully invaded this biotope. Our analyses show that across 66 freshwater invertebrate species from six phyla/classes that have transmuted into freshwater from the sea, hemolymph osmolalities decrease logarithmically with increasing S:V ratios. The arthropods have the highest osmolalities, from 300 to 650 mOsmoles/kg H2O in the Decapoda with 220–320 mOsmoles/kg H2O in the Insecta; osmolalities in the Annelida range from 150 to 200 mOsmoles/kg H2O, and the Mollusca showing the lowest osmolalities at 40–120 mOsmoles/kg H2O. Overall, osmolalities reach a cut-off at ∼200 mOsmoles/kg H2O, independently of increasing S:V ratio. The ability of species with small S:V ratios to maintain large osmotic gradients is mirrored in their putatively higher Na+/K+-ATPase activities that drive ion uptake processes. Selection pressures on these morpho-physiological characteristics have led to differential osmoregulatory abilities, rendering possible the conquest of freshwater while retaining some tolerance of the ancestral medium.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3