Testing Mechanisms of Vision: Sea Urchin Spine Density Does Not Correlate with Vision-Related Environmental Characteristics

Author:

Notar Julia C1ORCID,Meja Bernice1,Johnsen Sönke1

Affiliation:

1. Department of Biology, Duke University , Durham, NC 27708, USA

Abstract

Synopsis Sea urchins do not have eyes, yet they are capable of resolving simple images. One suggestion as to the mechanism of this capability is that the spines shade off-axis light from reaching the photosensitive test (skeleton). Following this hypothesis, the density of spines across the body determines the resolution (or sharpness) of vision by restricting the incidence of light on the photosensitive skin of the animal, creating receptive areas of different minimum resolvable angles. Previous studies have shown that predicted resolutions in several species closely match behaviorally determined resolutions, ranging from 10° to 33°. Here, we present a comparative morphological survey of spine density with species representatives from 22 of the 24 families of regular sea urchins (Class Echinoidea) in order to better understand the relative influences of phylogenetic history and three visually relevant environmental variables on this trait. We estimated predicted resolutions by calculating spine densities from photographs of spineless sea urchin tests (skeletons). Analyses showed a strong phylogenetic signal in spine density differences between species. Phylogenetically-corrected Generalized Least Squares models incorporating all habitat parameters were the most supported, and no particular parameter was significantly correlated with spine density. Spine density is subject to multiple, overlapping selective pressures and therefore it is possible that either (1) spine density does not mediate spatial vision in echinoids, or (2) visual resolution via spine density is a downstream consequence of sea urchin morphology rather than a driving force of adaptation in these animals.

Funder

Department of Defense

National Defense Science and Engineering Graduate

Duke University

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

Reference43 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3