Affiliation:
1. Ocean Science and Engineering, Georgia Institute of Technology , Atlanta, GA 30332 , USA
2. Civil and Environmental Engineering, Georgia Institute of Technology , Atlanta, GA 30332 , USA
3. Biological Sciences, Georgia Institute of Technology , Atlanta, GA 30332 , USA
Abstract
Abstract
Metachronal propulsion is commonly seen in organisms with the caridoid facies body plan, that is, shrimp-like organisms, as they beat their pleopods in an adlocomotory sequence. These organisms exist across length scales ranging several orders of Reynolds number magnitude, from 10 to 104, during locomotion. Further, by altering their stroke kinematics, these organisms achieve three distinct swimming modes. To better understand the relationship between Reynolds number, stroke kinematics, and resulting swimming mode, Euphausia pacifica stroke kinematics were quantified using high-speed digital recordings and compared to the results for the larger E.superba. Euphausia pacifica consistently operate with a greater beat frequency and smaller stroke amplitude than E. superba for each swimming mode, suggesting that length scale may affect the kinematics needed to achieve similar swimming modes. To expand on this observation, these euphausiid data are used in combination with previously published stroke kinematics from mysids and stomatopods to identify broad trends across swimming mode and length scale in metachrony. Principal component analysis (PCA) reveals trends in stroke kinematics and Reynolds number as well as the variation among taxonomic order. Overall, larger beat frequencies, stroke amplitudes, between-cycle phase lags, and Reynolds numbers are more representative of the fast-forward swimming mode compared to the slower hovering mode. Additionally, each species has a unique combination of kinematics which result in metachrony, indicating that there are other factors, perhaps morphological, which affect the overall metachronal characteristics of an organism. Finally, uniform phase lag, in which the timing between power strokes of all pleopods is equal, in five-paddle systems is achieved at different Reynolds numbers for different swimming modes, highlighting the importance of taking into consideration stroke kinematics, length scale, and the resulting swimming mode.
Funder
National Science Foundation
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Animal Science and Zoology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献