Use of the LunAero Open-Source Hardware Platform to Enhance the Accuracy and Precision of Traditional Nocturnal Migration Bird Counts

Author:

Honeycutt Wesley T1,Bridge Eli S1

Affiliation:

1. Oklahoma Biological Survey, University of Oklahoma , 111 Chesapeake, OK 73019 , USA

Abstract

Abstract Quantification of nocturnal migration of birds through moon watching is a technique ripe for modernization with superior computational power. In this paper, collected by a motorized telescope mount was data analyzed using both video observations by trained observers and modernized approaches using computer vision. The more advanced data extraction used the OpenCV library of computer vision tools to identify bird silhouettes by means of image stabilization and background subtraction. The silhouettes were sanitized and analyzed in sequence to produce stacked relationships between temporally close contours, discriminating birds from noise based on the assumption that birds migrate in stable paths. The flight ceiling of the birds was determined by extracting relevant correlation coefficient data from doppler radar co-located with the LunAero instrument in Norman, OK, USA using a method with low-computational overhead. The bird paths and flight ceiling were combined with lunar ephemera to provide input for the original method used for nocturnal migration quantification as well as an enhanced version of the same method with more advanced computational tools. We found that the manual quantification of migration activity detected 16,300 birds/km•h heading northwest from 110°, whereas the automated analysis reported a density of 43,794 birds/km•h heading northwest from 106.67°. Hence, there was agreement with regard to flight direction, but the automated method overestimated migration density by approximately three times. The reasons for the discrepancy between flight path detection appeared to be due to a substantial amount of noise in the video data as well as a tendency for the computer vision analysis to split single flight paths into two or more segments. The authors discuss ongoing innovations aimed at addressing these methodological challenges.

Funder

University of Oklahoma Aeroecology University Strategic Initiative

University of Oklahoma Thousands Strong LunAero crowdfunding campaign

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

Reference36 articles.

1. Theory of optical scintillation;Andrews;J Opt Soc Am A: Opt Im Sci Vis,1999

2. Spectral density of polarimetric variables separating biological scatterers in the VAD display;Bachmann;J Atmos Ocean Techn,2007

3. The opencv library;Bradski;Doc Dobbs J,2000

4. An astronomical determination of the heights of birds during nocturnal migration;Carpenter;Auk,1906

5. Partly cloudy with a chance of migration: weather, radars, and aeroecology;Chilson;Bull Am Meteorol Soc,2011

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3