Size-Dependent Scaling of Stingless Bee Flight Metabolism Reveals an Energetic Benefit to Small Body Size

Author:

Duell Meghan E1ORCID,Klok C Jaco2,Roubik David W3,Harrison Jon F2ORCID

Affiliation:

1. Department of Biology, Western University , 1151 Richmond Street, London, ON N6A 5B7 , Canada

2. School of Life Sciences, Arizona State University , Tempe, AZ 85287-4501 , USA

3. Smithsonian Tropical Research Institute , Luis Clement Avenue, Bldg. 401 Tupper, Balboa Ancon, Panama City , Republic of Panama

Abstract

Synopsis Understanding the effect of body size on flight costs is critical for the development of models of aerodynamics and animal energetics. Prior scaling studies that have shown that flight costs scale hypometrically have focused primarily on larger (>100 mg) insects and birds, but most flying species are smaller. We studied the flight physiology of 13 stingless bee species over a large range of body sizes (1–115 mg). Metabolic rate during hovering scaled hypermetrically (scaling slope = 2.11). Larger bees had warm thoraxes, while small bees were nearly ecothermic; however, even controlling for body temperature variation, flight metabolic rate scaled hypermetrically across this clade. Despite having a lower mass-specific metabolic rate during flight, smaller bees could carry the same proportional load. Wingbeat frequency did not vary with body size, in contrast to most studies that find wingbeat frequency increases as body size decreases. Smaller stingless bees have a greater relative forewing surface area, which may help them reduce the energy requirements needed to fly. Further, we hypothesize that the relatively larger heads of smaller species may change their body pitch in flight. Synthesizing across all flying insects, we demonstrate that the scaling of flight metabolic rate changes from hypermetric to hypometric at ∼58 mg body mass with hypermetic scaling below (slope = 1.2) and hypometric scaling (slope = 0.67) >58 mg in body mass. The reduced cost of flight likely provides selective advantages for the evolution of small body size in insects. The biphasic scaling of flight metabolic rates and wingbeat frequencies in insects supports the hypothesis that the scaling of metabolic rate is closely related to the power requirements of locomotion and cycle frequencies.

Funder

Society for Integrative and Comparative Biology

National Science Foundation

Smithsonian Tropical Research Institute

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3