EcoPhysioMechanics: Integrating Energetics and Biomechanics to Understand Fish Locomotion under Climate Change

Author:

Di Santo Valentina1ORCID

Affiliation:

1. Division of Functional Morphology, Department of Zoology, Stockholm University , Svante Arrhenius väg 18B, 11419 Stockholm , Sweden

Abstract

Abstract Ecological physiologists and biomechanists have investigated swimming performance in a diversity of fishes; however, the connection between form, function, and energetics of locomotion has been rarely evaluated in the same system and under climate change scenarios. In this perspective, I argue that working within the framework of “EcoPhysioMechanics,” i.e. integrating energetics and biomechanics tools, to measure locomotor performance and behavior under different abiotic factors, improves our understanding of the mechanisms, limits and costs of movement. To demonstrate how EcoPhysioMechanics can be applied to locomotor studies, I outline how linking biomechanics and physiology allows us to understand how fishes may modulate their movement to achieve high speeds or reduce the costs of locomotion. I also discuss how the framework is necessary to quantify swimming capacity under climate change scenarios. Finally, I discuss current dearth of integrative studies and gaps in empirical datasets that are necessary to understand fish swimming under changing environments.

Funder

Company of Biologists

Swedish Research Council

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3