Affiliation:
1. Division of Functional Morphology, Department of Zoology, Stockholm University , Svante Arrhenius väg 18B, 11419 Stockholm , Sweden
Abstract
Abstract
Ecological physiologists and biomechanists have investigated swimming performance in a diversity of fishes; however, the connection between form, function, and energetics of locomotion has been rarely evaluated in the same system and under climate change scenarios. In this perspective, I argue that working within the framework of “EcoPhysioMechanics,” i.e. integrating energetics and biomechanics tools, to measure locomotor performance and behavior under different abiotic factors, improves our understanding of the mechanisms, limits and costs of movement. To demonstrate how EcoPhysioMechanics can be applied to locomotor studies, I outline how linking biomechanics and physiology allows us to understand how fishes may modulate their movement to achieve high speeds or reduce the costs of locomotion. I also discuss how the framework is necessary to quantify swimming capacity under climate change scenarios. Finally, I discuss current dearth of integrative studies and gaps in empirical datasets that are necessary to understand fish swimming under changing environments.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Animal Science and Zoology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献