Radiation-induced eCIRP impairs macrophage bacterial phagocytosis

Author:

Yamaga Satoshi1ORCID,Murao Atsushi1,Zhou Mian1,Aziz Monowar123,Brenner Max123ORCID,Wang Ping123ORCID

Affiliation:

1. Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research , 350 Community Dr., Manhasset, NY 11030 , United States

2. Department of Surgery, Zucker School of Medicine at Hofstra/Northwell , 350 Community Dr., Manhasset, NY 11030 , United States

3. Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell , 350 Community Dr., Manhasset, NY 11030 , United States

Abstract

Abstract Macrophages are essential immune cells for host defense against bacterial pathogens after radiation injury. However, the role of macrophage phagocytosis in infection following radiation injury remains poorly examined. Extracellular cold-inducible RNA-binding protein is a damage-associated molecular pattern that dysregulates host immune system responses such as phagocytosis. We hypothesized that radiation-induced extracellular cold-inducible RNA-binding protein release impairs macrophage phagocytosis of bacteria. Adult healthy mice were exposed to 6.5 Gy total body irradiation. Primary peritoneal macrophages isolated from adult healthy mice were exposed to 6.5 Gy radiation. Extracellular cold-inducible RNA-binding protein–neutralizing monoclonal antibody was added to the cell culture prior to irradiation. Bacterial phagocytosis by peritoneal macrophages was assessed using pHrodo Green-labeled Escherichia coli 7 d after irradiation ex vivo and in vitro. Bacterial phagocytosis was also assessed after treatment with recombinant murine cold-inducible RNA-binding protein. Rac1 and ARP2 protein expression in cell lysates and extracellular cold-inducible RNA-binding protein levels in the peritoneal lavage were assessed by western blotting. Bacterial phagocytosis by peritoneal macrophages was significantly decreased after irradiation compared with controls ex vivo and in vitro. Rac1 and ARP2 expression in the peritoneal macrophages were downregulated after total body irradiation. Total body irradiation significantly increased extracellular cold-inducible RNA-binding protein levels in the peritoneal cavity. Recombinant murine cold-inducible RNA-binding protein significantly decreased bacterial phagocytosis in a dose-dependent manner. Extracellular cold-inducible RNA-binding protein monoclonal antibody restored bacterial phagocytosis by peritoneal macrophages after irradiation. Ionizing radiation exposure impairs bacterial phagocytosis by macrophages after irradiation. Neutralization of extracellular cold-inducible RNA-binding protein restores the phagocytic ability of macrophages after irradiation. Our findings elucidate a novel mechanism of immune dysfunction and provide a potential new therapeutic approach for limiting infection after radiation injury.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3