Affiliation:
1. Department of Oral Biology, School of Dental Medicine, University at Buffalo , 3435 Main street, Buffalo, NY 14214 , United States
Abstract
Abstract
Chronic inflammatory periodontal disease develops in part from the infiltration of a large number of classically activated inflammatory macrophages that release inflammatory cytokines important for disease progression, including inflammasome-dependent interleukin (IL)-1β. Streptococcus gordonii is a normally commensal oral microorganism; while not causative, recent evidence indicates that commensal oral microbes are required for the full development of periodontal disease. We have recently reported that inflammatory macrophages counterintuitively allow for the increased survival of phagocytosed S. gordonii over nonactivated or alternatively activated macrophages. This survival is dependent on increased reactive oxygen species production within the phagosome of the inflammatory macrophages, and resistance by the bacterium and can result in S. gordonii damaging the phagolysosomes. Here, we show that activated macrophages infected with live S. gordonii release more IL-1β than non-activated macrophages infected with either live or dead S. gordonii, and that the survival of oral Streptococci are more dependent on macrophage activation than other Gram positive microbes, both classical pathogens and commensals. We also find that S. gordonii–dependent inflammatory macrophage inflammasome activation requires the cytoplasmic NLRP6. Overall, our results suggest S. gordonii is capable of evading immune destruction, increasing inflammatory mediators, and increasing inflammatory macrophage response, and that this ability is increased under conditions of inflammation. This work reveals additional mechanisms by which normally commensal oral streptococci-macrophage interactions can change, resulting in increased release of mature IL-1β, potentially contributing to an environment that perpetuates inflammation.
Funder
National Institutes of Health
Publisher
Oxford University Press (OUP)
Subject
Cell Biology,Immunology,Immunology and Allergy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献