Affiliation:
1. Centre de Recherche, de l’Institut de Cardiologie et de Pneumologie de Québec , 2725 Chemin Ste-Foy, Québec, QC, G1V 4G5 , Canada
2. Department of Medicine, Faculty of Medicine, Université Laval , 325 Rue de l'Université, Québec, QC, G1V 0A6 , Canada
Abstract
Abstract
Allergic asthma is a chronic inflammatory disease characterized by Th2, conventional dendritic cell, and B-cell activation. In addition to excessive inflammation, asthma pathogenesis includes dysregulation of anti-inflammatory pathways, such as the CD200/CD200R pathway. Thus, we investigated whether a CD200R agonist, CD200Fc, could disrupt the inflammatory cascade in chronic allergic asthma pathogenesis using a mice model of experimental asthma. Mice were exposed to house dust mites for 5 wk, and CD200Fc treatment was initiated after chronic inflammation was established (starting on week 4). We demonstrate that chronic house dust mite exposure altered CD200 and CD200R expression on lung immune cell populations, including upregulation of CD200 on alveolar macrophages and reduced expression of CD200 on conventional dendritic cells. CD200Fc treatment does not change bronchoalveolar cellular infiltration, but it attenuates B-cell activation and skews the circulating immunoglobulin profile toward IgG2a. This is accompanied by reduced activation of conventional dendritic cells, including lower expression of CD40, especially on conventional dendritic cell subset 2 CD200R+. Furthermore, we confirm that CD200Fc can directly modulate conventional dendritic cell activation in vitro using bone marrow–derived dendritic cells. Thus, the CD200/CD200R pathway is dysregulated during chronic asthma pathogenesis, and the CD200R agonist modulates B-cell and dendritic cell activation but, in our chronic model, is not sufficient to alter inflammation measured in bronchoalveolar lavage.
Publisher
Oxford University Press (OUP)
Subject
Cell Biology,Immunology,Immunology and Allergy