Human CXCR1 knock-in mice infer functional expression of a murine ortholog

Author:

Fahimi Farnaz1,Alam Md Jahangir2ORCID,Ang Caroline3,Adhyatma Galih Prakasa1,Xie Liang2,Mackay Charles R2ORCID,Robert Remy1ORCID

Affiliation:

1. Department of Physiology, Biomedicine Discovery Institute, Monash University , Clayton, Victoria 3800 , Australia

2. Department of Microbiology, Biomedicine Discovery Institute, Monash University , Clayton, Victoria 3800 , Australia

3. Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University , Clayton, Victoria 3800 , Australia

Abstract

Abstract Targeting CXCR1 and CXCR2 chemokine receptors to block neutrophil migration to sites of inflammation is a promising therapeutic approach for various inflammatory and autoimmune diseases. However, assessing the translational potential of such therapies using mouse models is challenging due to the unclear expression of CXCR1 at the protein level. Although CXCR2 has been well characterized in both mice and humans, the protein-level expression of CXCR1 in mice (mCXCR1) remains controversial. To address this issue, we generated a novel human CXCR1 knock-in (hCXCR1 KI) mouse model in which the transgene is under the control of the native mouse promoter and regulatory elements. Using an anti-human CXCR1 monoclonal antibody (anti-hCXCR1 monoclonal antibody), we found that hCXCR1 was highly expressed on neutrophils in the hCXCR1 KI mice, comparable to levels observed in human neutrophils. This successful expression of hCXCR1 in this mouse model suggests that functional mCXCR1 likely exists. To investigate the functional role of CXCR1, we investigated how antagonizing this receptor using anti-hCXCR1 monoclonal antibody in the arthritis model would affect disease outcomes. Antibody treatment significantly alleviated all signs of joint inflammation. In summary, our newly generated hCXCR1 KI transgenic mice provide a valuable tool to investigate the therapeutic efficacy of small molecules or monoclonal antibodies that antagonize this receptor in neutrophil-mediated pathologies.

Funder

National Health and Medical Research Council

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Immunology,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3