NK cells in COVID-19—from disease to vaccination

Author:

Hammer Quirin1ORCID,Cuapio Angelica1,Bister Jonna1,Björkström Niklas K1ORCID,Ljunggren Hans-Gustaf1

Affiliation:

1. Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital , Alfred Nobels allé 8, Stockholms län, 141 52 Huddinge , Sweden

Abstract

Abstract Natural killer cells participate in the host innate immune response to viral infection. Conversely, natural killer cell dysfunction and hyperactivation can contribute to tissue damage and immunopathology. Here, we review recent studies with respect to natural killer cell activity during infection with SARS-CoV-2. Discussed are initial reports of patients hospitalized with COVID-19, which revealed prompt natural killer cell activation during the acute disease state. Another hallmark of COVID-19, early on observed, was a decrease in numbers of natural killer cells in the circulation. Data from patients with acute SARS-CoV-2 infection as well as from in vitro models demonstrated strong anti–SARS-CoV-2 activity by natural killer cells, likely through direct cytotoxicity as well as indirectly by secreting cytokines. Additionally, we describe the molecular mechanisms underlying natural killer cell recognition of SARS-CoV-2–infected cells, which involve triggering of multiple activating receptors, including NKG2D, as well as loss of inhibition through NKG2A. Discussed is also the ability of natural killer cells to respond to SARS-CoV-2 infection via antibody-dependent cellular cytotoxicity. With respect to natural killer cells in the pathogenesis of COVID-19, we review studies demonstrating how hyperactivation and misdirected NK cell responses could contribute to disease course. Finally, while knowledge is still rather limited, we discuss current insights suggesting a contribution of an early natural killer cell activation response in the generation of immunity against SARS-CoV-2 following vaccination with anti–SARS-CoV-2 mRNA vaccines.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Immunology,Immunology and Allergy

Reference54 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3