Fir (Abies balsamea) (Pinales: Pinaceae) needle essential oil enhances the knockdown activity of select insecticides

Author:

Norris Edmund J1ORCID,Bloomquist Jeffrey R2

Affiliation:

1. USDA/ARS Center for Medical, Agricultural, and Veterinary Entomology , Gainesville, FL 32608 , USA

2. Entomology and Nematology Department, Emerging Pathogens Institute, University of Florida , 2055 Mowry Road , Gainesville, FL 32608 , USA

Abstract

Abstract Because of the increased interest in plant essential oils (PEO) for both home pest control and personal bite protection, the ability of fir needle (Abies balsamea) oil to synergize the 1-h knockdown and 24-h toxicity of 9 different synthetic insecticides was evaluated. Fir needle oil strongly synergized knockdown of the neonicotinoids, clothianidin, and thiamethoxam (between 16- and 24-fold), as well as natural pyrethrins (12-fold), but had less effect with organophosphates and fipronil. For 24-h mortality, only pirimiphos-methyl was strongly synergized by fir needle oil pretreatment (18-fold). Chemical analysis and testing identified delta-3-carene is the most bioactive constituent, producing synergism similar to that of the whole oil. In fact, this constituent synergized the 24-h mortality of clothianidin to a higher degree than fir needle oil itself (4.9-fold vs. 2.4-fold). Synergism is unlikely to be mediated by effects on the nervous system, as fir needle oil caused no change in mosquito central nervous system firing at 100 ppm and did not synergize an inactive concentration of natural pyrethrins (10 nM). To better understand fir needle oil effects, we evaluated the ability of pretreatment with this oil to impact Aedes aegypti monooxygenase degradation of a model substrate, 7-ethoxycoumarin. Interestingly, both fir needle oil and delta-3-carene caused a significant increase in metabolic degradation of 7-ethoxycoumarin, perhaps indicating they upregulate oxidative metabolic processes. Such an action would explain why fir needle oil enhances knockdown, but not 24-h mortality for most of the insecticides studied here, whereas increased bioactivation would explain the synergism of pirimiphos-methyl toxicity.

Funder

U.S. Department of Agriculture (USDA)—Agricultural Research Service

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Insect Science,General Veterinary,Parasitology

Reference27 articles.

1. Synergistic and antagonistic effects of atrazine on the toxicity of organophosphorodithioate and organophosphorothioate insecticides to Chironomus tentans (Diptera: Chironomidae);Anderson,2004

2. Acute toxicity and acetylcholinesterase inhibition in grass shrimp (Palaemonetes pugio) and oysters (Crassostrea virginica) exposed to the organophosphate dichlorvos: laboratory and field studies;Bolton-Warberg,2007

3. New paradigms in crop protection research: registrability and cost of goods;Corsi,2015

4. Plant essential oils synergize and antagonize toxicity of different conventional insecticides against Myzus persicae (Hemiptera: Aphididae);Faraone,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3