Ecological predictors of mosquito population and arbovirus transmission synchrony estimates

Author:

McMillan Joseph R12ORCID,Chaves Luis Fernando3ORCID,Armstrong Philip M2ORCID

Affiliation:

1. Department of Biological Sciences, Texas Tech University , Lubbock, TX , USA

2. Department of Entomology, The Connecticut Agricultural Experiment Station , New Haven, CT , USA

3. Department of Environmental and Occupational Health, School of Public Health, Indiana University , Bloomington, IN , USA

Abstract

Abstract Quantifying synchrony in species population fluctuations and determining its driving factors can inform multiple aspects of ecological and epidemiological research and policy decisions. We examined seasonal mosquito and arbovirus surveillance data collected in Connecticut, United States from 2001 to 2020 to quantify spatial relationships in 19 mosquito species and 7 arboviruses timeseries accounting for environmental factors such as climate and land cover characteristics. We determined that mosquito collections, on average, were significantly correlated up to 10 km though highly variable among the examined species. Few arboviruses displayed any synchrony and significant maximum correlated distances never exceeded 5 km. After accounting for distance, mixed effects models showed that mosquito or arbovirus identity explained more variance in synchrony estimates than climate or land cover factors. Correlated mosquito collections up to 10–20 km suggest that mosquito control operations for nuisance and disease vectors alike must expand treatment zones to regional scales for operations to have population-level impacts. Species identity matters as well, and some mosquito species will require much larger treatment zones than others. The much shorter correlated detection distances for arboviruses reinforce the notion that focal-level processes drive vector-borne pathogen transmission dynamics and risk of spillover into human populations.

Funder

American Mosquito Control Association

Centers for Disease Control and Prevention

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Insect Science,General Veterinary,Parasitology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3