Survival of Salmonella Typhimurium in the hemolymph of the German cockroach vector is limited by both humoral immune factors and hemocytes but not by trehalose metabolism

Author:

Turner Matthew1,Van Hulzen Landen1,Peta Vincent1ORCID,Pietri Jose E1ORCID

Affiliation:

1. Sanford School of Medicine, Division of Basic Biomedical Sciences, University of South Dakota , Vermillion, SD , USA

Abstract

Abstract The German cockroach (Blattella germanica) has been linked to transmission of Salmonella enterica serovar Typhimurium (S. Typhimurium), but infection dynamics within this vector are poorly characterized. Our recent work has focused on S. Typhimurium infection in the cockroach gut. However, microbial dissemination to the hemolymph is an essential aspect of many vector-borne pathogen transmission cycles and could potentially contribute to S. Typhimurium colonization of cockroaches. Therefore, the goal of this study was to examine the ability of S. Typhimurium to disseminate, survive, and proliferate in the hemolymph of cockroaches after oral infection. We detected only low numbers of bacteria in the hemolymph of a minority of insects (~26%) after oral infection. Further, S. Typhimurium was unable to survive overnight in cell-free hemolymph. Several hypotheses to explain the inability of S. Typhimurium to colonize hemolymph were tested. First, we investigated the ability of S. Typhimurium to metabolize trehalose, the primary sugar in hemolymph. S. Typhimurium grew efficiently in vitro using trehalose as a sole carbon source and mutant strains lacking trehalose metabolism genes exhibited no growth deficiencies in media mimicking the composition of hemolymph, suggesting that trehalose metabolism ability is not a factor involved in restricting survival in hemolymph. On the other hand, heat-inactivated cell-free hemolymph was permissive of S. Typhimurium growth, demonstrating that survival in hemolymph is limited specifically by heat-labile humoral factors. The involvement of cellular immune responses was also investigated and cockroach hemocytes in culture were observed to internalize S. Typhimurium within 1 h of exposure. Most hemocytes harbored few to no bacteria after 24 h, indicating that hemocyte responses are additionally involved in clearing infection from the hemolymph. However, dense intracellular clusters of S. Typhimurium were observed sporadically, suggesting a small subset of hemocytes may serve as reservoirs for bacterial replication. Together, our results reveal that a minute proportion of ingested S. Typhimurium is able to escape the cockroach gut and enter the hemolymph, but this systemic population is limited by both humoral effectors and hemocytes. Thus, we conclude that invasion of the hemolymph appears minimally important for colonization of the cockroach vector and that colonization of the gut is the main driver of vector-borne transmission. Our insight into the antimicrobial mechanisms of cockroach hemolymph also highlights the strong ability of these prevalent pests/vectors to cope with frequent infectious challenges in septic habitats.

Funder

National Institutes of Health

National Institute of Allergy and Infectious Diseases

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Insect Science,General Veterinary,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3