Bunching as a Method to Reduce Wood Moisture through Transpirational Drying following Forest Restoration Treatments in Northern Arizona

Author:

Riquelme Marcos A1,Hofstetter Richard W1ORCID,Auty David1ORCID,Gaylord Monica L2

Affiliation:

1. School of Forestry, Northern Arizona University, Flagstaff, AZ

2. Forest Health Protection, Region 3 USDA Forest Service, Flagstaff, AZ

Abstract

AbstractThinning is a necessary silvicultural activity for restoring the long-term sustainability of pine forests in much of the southwestern United States. In northern Arizona, a landscape-scale restoration effort, called the Four Forest Restoration Initiative, has been implemented to recover the long-term sustainability of 2.4 million acres on four national forests. Cost-effective and efficient thinning methods are needed due to the scale of the project to help improve habitat, conserve biodiversity, protect old growth, reduce risk of severe wildfire, and restore natural forest structure and function. Mechanical cutting using a feller-buncher is the primary method of thinning in these forests due to the extreme high number of small-diameter ponderosa pine trees. A feller-buncher places harvested trees into small piles known as “bunches.” In this review, we highlight advantages and disadvantages of bunching tree materials in restoration programs and review published studies on transpirational drying of bunches of various tree species in different forest habitats across the United States, including ponderosa pine in Arizona. Studies show that transpirational drying of trees in bunches can be an effective method to allow for wood drying, but this process can be affected by abiotic factors associated with seasonal climate and stand characteristics.Study ImplicationsThe Four Forest Restoration Initiative makes up the largest landscape-level collaborative project in the history of the USDA Forest Service with more than 2.4 million acres of forest habitat. Thinning is a necessary silvicultural activity for restoring the long-term sustainability of these forests in northern Arizona. Because of the extremely high number (i.e., average of 720 trees per acre) of small-diameter ponderosa pine (Pinus ponderosa) trees, mechanical cutting is more cost effective than individual saw cutting, which is why a feller-buncher machine is the primary thinning tool. During feller-buncher thinning, small piles of trees known as “bunches” are created. Bunching trees can allow for wood drying in the field that translates into lower operational costs because drier trees are lighter in weight, which reduces transportation costs. In northern Arizona, a 60-day time frame is allotted for transpirational drying before tree materials must be removed from the forest. However, because the drying process through bunching is affected by abiotic conditions, there may be a need to adjust this time frame to account for seasonal weather patterns. For example, during spring, when weather in northern Arizona is hot and dry, less time might be necessary for tree bunches to lose enough moisture while still rendering the thinning operation profitable and simultaneously avoiding bark beetle proliferation given that their life cycle consists of about 40 days. Furthermore, bunching studies should be developed to look at individual tree species in their respective locations and to investigate the effects of the presence, partial presence, or absence of branches and bark on trees within bunches. Studies should also be conducted to look at the effects of bunches on insect communities, particularly those that can cause extensive tree mortality.

Funder

Four Forest Restoration Initiative

Forest Health Protection Region 3

Northern Arizona University School of Forestry

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Forestry

Reference74 articles.

1. Perspectives of woody biomass for energy: Survey of state foresters, state energy biomass contacts, and National Council of Forestry Association executives;Aguilar;J. For.,2009

2. Impact of mechanized harvesting machines on forest ecosystem: Residual stand damage;Akay;J. Appl. Sci.,2006

3. Impact of mechanized harvesting on compaction of sandy and clayey forest soils: Results of a meta-analysis;Ampoorter;Ann. For. Sci.,2012

4. Production of forest energy;Andersson,2002

5. Changes in logging injury rates associated with use of feller-bunchers in West Virginia;Bell;J. Saf. Res.,2002

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3