A Stochastic Production Frontier Analysis of Factors That Affect Productivity and Efficiency of Logging Businesses in Virginia

Author:

Sartori Pedro J1ORCID,Schons Stella Z1ORCID,Barrett Scott1

Affiliation:

1. Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University , Blacksburg, VA , USA

Abstract

Abstract Understanding the effect of the relationship between timber harvesting attributes on loggers’ productivity and efficiency is crucial for the feasibility and expansion of sustainable forest management and logging. We applied a stochastic production frontier model to firm-level operational data collected from 202 loggers in Virginia, United States, in 2019. Logging equipment value, physiographic region, tract area, number of workers and crews in the woods, college education level, and harvest type statistically increase harvesting productivity. Harvesting productivity in the Coastal Plain was the greatest of all physiographic regions, and pine clearcut productivity was statistically greater than that of hardwood thinning. On the other hand, manual felling reduces harvesting productivity. We found an average efficiency rate of 67% among firms in our sample, which is similar to that found in the literature. The estimated values can show factors that improve forest harvest productivity through better planning and investments while improving the sustainable use of inputs and resources. Study Implications: We empirically analyzed factors affecting logging productivity and efficiency in the southern US state of Virginia. Increased productivity was associated with working in the Coastal Plain physiographic region, investing in logging equipment, increasing the number of workers and crews in the woods, increasing pine clearcut as opposed to hardwood thinning, choosing optimal harvesting tract size, and having a college education as opposed to no high school degree. Manual felling reduces harvesting productivity, and average BMP implementation time does not affect harvesting productivity. Our results can be used as a guide in planning future decisions to increase logging productivity.

Funder

Sustainable Harvesting and Resource Professional

Publisher

Oxford University Press (OUP)

Reference25 articles.

1. “Environmental Factors Affecting Technical Efficiency in Norwegian Steep Terrain Logging Crews: A Stochastic Frontier Analysis.”;Aalmo;Journal of Forest Research,2015

2. “Formulation and Estimation of Stochastic Frontier Production Function Models.”;Aigner;Journal of Econometrics,1977

3. “Characteristics of Logging Businesses across Virginia’s Diverse Physiographic Regions.”;Barrett;Forests,2017

4. “Evaluating Continuing Education Needs and Program Effectiveness Using a Survey of Virginia’s Sharp Logger Program Participants.”;Barrett;Journal of Extension,2012

5. “Timber Harvester Perceptions of Costs and Benefits from Applying Water Quality BMPs in North-Central USA.”;Blinn;Journal of Forest Engineering,2001

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3