True nutrient and amino acid digestibility of dog foods made with human-grade ingredients using the precision-fed cecectomized rooster assay1

Author:

Oba Patrícia M1ORCID,Utterback Pamela L1,Parsons Carl M1,Swanson Kelly S123

Affiliation:

1. Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL

2. Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL

3. Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL

Abstract

AbstractFor a pet diet to be labeled as human-grade, every ingredient and the finished food must be stored, handled, processed, and transported according to the current good manufacturing practices for human edible foods. Human-grade dog foods are now available and increasing in popularity, but little research has been conducted to test the digestibility of these foods. For this reason, the objective of this experiment was to determine the true nutrient and amino acid (AA) digestibilities of dog foods formulated with human-grade ingredients using the precision-fed cecectomized rooster assay. Six commercial dog foods were tested, including the Beef & Russet Potato (BRP), Chicken & White Rice (CWR), Fish & Sweet Potato (FSP), Lamb & Brown Rice (LBR), Turkey & Whole Wheat Macaroni (TWM), and Venison & Squash (VSR) formulas provided by Just Food For Dogs LLC (Irvine, CA). Before analysis, all foods were lyophilized and ground. A precision-fed rooster assay using cecectomized roosters was conducted to determine the true nutrient digestibility and standardized AA digestibilities of the foods tested. Conventional roosters were used to determine the nitrogen-corrected true metabolizable energy (TMEn) of the foods. All animal procedures were approved by the University of Illinois Institutional Animal Care and Use Committee prior to experimentation. The substrates and rooster excreta were analyzed for macronutrient and AA composition. All data were analyzed using the Mixed Models procedure of SAS (version 9.4; SAS Institute, Cary, NC). In general, all foods tested were highly digestible. Dry matter digestibility was similar among CWR, LBR, and TWR foods, and greater (P < 0.0001) than that of FSP and VSR foods. Organic matter digestibility was highest (P = 0.0002) for CWR and lowest (P = 0.0002) for VSR. For the majority of indispensable AA, digestibilities were greater than 85%, with some being greater than 90%. TMEn was higher (P < 0.0001) for BRP than the other foods, which were similar to one another. Also, TMEn values were much higher than what would be estimated by using modified Atwater factors and often above the predictive equations for metabolizable energy (ME) recommended by the National Research Council or by using Atwater factors. Although statistical differences were observed among foods, they all performed well and the foods tested had very high AA digestibilities. Additionally, the TMEn data suggest that existing methods and equations for ME prediction underestimate the energy content of the foods tested.

Funder

Just Food For Dogs LLC

Publisher

Oxford University Press (OUP)

Subject

General Veterinary,Animal Science and Zoology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3