Cardiopulmonary bypass increases endothelial dysfunction after pulmonary ischaemia-reperfusion in an animal model

Author:

Selim Jean12,Hamzaoui Mouad1,Boukhalfa Inès1,Djerada Zoubir1,Chevalier Laurence3,Piton Nicolas4,Genty Damien4,Besnier Emmanuel12,Clavier Thomas12,Dumesnil Anaïs1,Renet Sylvanie1,Mulder Paul1,Doguet Fabien1,Tamion Fabienne1,Veber Benoît2,Richard Vincent1,Baste Jean-Marc15

Affiliation:

1. Normandie Univ, UNIVROUEN, INSERM U1096, Rouen, France

2. Rouen University Hospital, Department of Anaesthesia and Critical Care, Rouen, France

3. Normandie Univ, UNIROUEN, CNRS, GPM-UMR 6634, Rouen, France

4. Rouen University Hospital, Department of Pathology, Rouen, France

5. Rouen University Hospital, Department of Thoracic Surgery, Rouen, France

Abstract

Abstract OBJECTIVES Endothelial dysfunction during ischaemia-reperfusion (IR) is a major cause of primary graft dysfunction during lung transplantation. The routine use of cardiopulmonary bypass (CPB) during lung transplantation remains controversial. However, the contribution of CPB to pulmonary endothelial dysfunction remains unclear. The objective was to investigate the impact of CPB on endothelial dysfunction in a lung IR rat model. METHODS Rats were allocated to 4 groups: (i) Sham, (ii) IR, (iii) CPB and (iv) IR-CPB. The primary outcome was the study of pulmonary vascular reactivity by wire myograph. We also assessed glycocalyx degradation by enzyme-linked immunosorbent assay and electron microscopy and both systemic and pulmonary inflammation by enzyme-linked immunosorbent assay and immunohistochemistry. Rats were exposed to 45 min of CPB and IR. We used a CPB model allowing femoro-femoral support with left pulmonary hilum ischaemia for IR. RESULTS Pulmonary endothelium-dependent relaxation to acetylcholine was markedly reduced in the IR-CPB group (10.7 ± 9.1%) compared to the IR group (50.5 ± 5.2%, P < 0.001), the CPB group (54.1 ± 4.7%, P < 0.001) and the sham group (80.8 ± 6.7%, P < 0.001), suggesting that the association of pulmonary IR and CPB increases endothelial dysfunction. In IR-CPB, IR and CPB groups, vasorelaxation was completely abolished when inhibiting nitric oxide synthase, suggesting that this relaxation process was mainly mediated by nitric oxide. We observed higher syndecan-1 plasma levels in the IR-CPB group in comparison with the other groups, reflecting an increased degradation of glycocalyx. We also observed higher systemic inflammation in the IR-CPB group as shown by the increased plasma levels of IL-1β, IL-10. CONCLUSIONS CPB significantly increased the IR-mediated effects on pulmonary endothelial dysfunction. Therefore, the use of CPB during lung transplantation could be deleterious, by increasing endothelial dysfunction.

Funder

ADIR

Charles Nicolle Foundation

Publisher

Oxford University Press (OUP)

Subject

Cardiology and Cardiovascular Medicine,Pulmonary and Respiratory Medicine,General Medicine,Surgery

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3