Optimal chest wall prosthesis: comparative study of mechanical and functional behaviour

Author:

Girotti Paolo Nicola Camillo1ORCID,Königsrainer Ingmar1,Pastorino Ugo2,Girotti Ambrogio Luigi3,Rosa Francesco3

Affiliation:

1. Department of General and Thoracic Surgery, Landeskrankenhaus Feldkirch, Feldkirch, Austria

2. Department of Thoracic Surgery, National Institute of Cancer, Milan, Italy

3. Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy

Abstract

Abstract OBJECTIVES Chest wall resections are most commonly performed for tumours, infection, radiation necrosis and trauma. Defects in the anterior chest greater than 5 cm, posterior defects more than 10 cm or resection including more than 3 ribs, independently of the location, require skeletal prosthetic reconstruction. The aim of this paper was to evaluate the strength of prostheses that reproduced the normal human anatomy using different materials subjected to the most dangerous loading conditions. METHODS The biomechanical behaviours of different prosthetic materials under critical rib fracture conditions were analysed using the finite element method and then validated through mechanical testing of 3-dimensional polymethylmethacrylate ribs as a prosthesis reproducing the native anatomy of the human ribcage. RESULTS The prosthetic materials and the polymethylmethacrylate prosthesis were tested under 3 load conditions: sternal load (an anterior–posterior load applied at the third rib); lateral load (strength applied at the lateral arch of the fifth rib) and vertical load (vertical load applied at the first sternocostal junction) and showed the same results in terms of failures compared to the results from the finite element method model simulation (same location and number of fractures were detected). Although the displacement error between the finite element method and experimental test was up to 5% overall, no other microcracking was observed. CONCLUSIONS This experimental study demonstrated that all prosthetic materials currently available for human use show optimal mechanical behaviour in term of resistance and organ protection. Specifically, polymethylmethacrylate was a good candidate as a prosthetic material in term of lightness, resistance and prosthetic weight.

Publisher

Oxford University Press (OUP)

Subject

Cardiology and Cardiovascular Medicine,Pulmonary and Respiratory Medicine,General Medicine,Surgery

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3