Feasibility of tracheal reconstruction using silicone-stented aortic allografts

Author:

Wei Shixiong12,Zhang Yiyuan12,Luo Feixiang1,Duan Kexing1,Li Mingqian1,Lv Guoyue1

Affiliation:

1. Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University , Changchun, China

2. Department of Thoracic Surgery, The First Hospital of Jilin University , Changchun, China

Abstract

Abstract OBJECTIVES Tracheal reconstruction post-extensive resection remains an unresolved challenge in thoracic surgery. This study evaluates the use of aortic allografts (AAs) for tracheal replacement and reconstruction in a rat model, aiming to elucidate the underlying mechanisms of tracheal regeneration. METHODS AAs from female rats were employed for tracheal reconstruction in 36 male rats, with the replacement exceeding half of the tracheal length. To avert collapse, silicone stents were inserted into the AA lumens. No immunosuppressive therapy was administered. The rats were euthanized biweekly, and the AAs were examined for neovascularization, cartilage formation, respiratory epithelial ingrowth, submucosal gland regeneration and the presence of the Sex-determining region of Y-chromosome (SRY) gene. RESULTS All procedures were successfully completed without severe complications. The AA segments were effectively integrated into the tracheal framework, with seamless distinction at suture lines. Histological analysis indicated an initial inflammatory response, followed by the development of squamous and mucociliary epithelia, new cartilage ring formation and gland regeneration. In situ hybridization identified the presence of the SRY gene in newly formed cartilage rings, confirming that regeneration was driven by recipient cells. CONCLUSIONS This study demonstrates the feasibility of AAs transforming into functional tracheal conduits, replicating the main structural and functional characteristics of the native trachea. The findings indicate that this approach offers a novel pathway for tissue regeneration and holds potential for treating extensive tracheal injuries.

Funder

Natural Science Foundation of Jilin Province

Education Department of Jilin Province

Youth Development Fund of the First Hospital of Jilin University

Publisher

Oxford University Press (OUP)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3