In vitro investigation of axial mechanical support devices implanted in the novel convergent cavopulmonary connection Fontan

Author:

Cleveland Vincent1,Contento Jacqueline1,Mass Paige1,Hardikar Priyanka1,Wu Qiyuan2,Liu Xiaolong3,Aslan Seda2,Loke Yue-Hin1,Krieger Axel2,Lunos Scott4,Olivieri Laura5,Sinha Pranava6ORCID

Affiliation:

1. Division of Cardiology, Children’s National Hospital , Washington, DC, USA

2. Department of Mechanical Engineering, Johns Hopkins University , Baltimore, MD, USA

3. Department of Mechanical Engineering, Texas Tech University , Lubbock, TX, USA

4. Biostatistical Design and Analysis Center, Clinical and Translational Science Institute, University of Minnesota , Minneapolis, MN, USA

5. Division of Pediatric Cardiology, University of Pittsburgh Medical Center , Pittsburgh, PA, USA

6. Department of Pediatric Cardiac Surgery, M Health Fairview University of Minnesota , Minneapolis, MN, USA

Abstract

Abstract OBJECTIVES The 2 opposing inflows and 2 outflows in a total cavopulmonary connection make mechanical circulatory support (MCS) extremely challenging. We have previously reported a novel convergent cavopulmonary connection (CCPC) Fontan design that improves baseline characteristics and provides a single inflow and outflow, thus simplifying MCS. This study aims to assess the feasibility of MCS of this novel configuration using axial flow pumps in an in vitro benchtop model. METHODS Three-dimensional segmentations of 12 single-ventricle patients (body surface area 0.5–1.75 m2) were generated from cardiovascular magnetic resonance images. The CCPC models were designed by connecting the inferior vena cava and superior vena cava to a shared conduit ascending to the pulmonary arteries, optimized in silico. The 12 total cavopulmonary connection and their corresponding CCPC models underwent in vitro benchtop characterization. Two MCS devices were used, the Impella RP® and the PediPump. RESULTS MCS successfully and symmetrically reduced the pressure in both vena cavae by >20 mmHg. The devices improved the hepatic flow distribution balance of all CCPC models (Impella RP®P = 0.045, PediPump P = 0.055). CONCLUSIONS The CCPC Fontan design provides a feasible MCS solution for a failing Fontan by balancing hepatic flow distribution and symmetrically decompressing the central venous pressure. Cardiac index may also improve with MCS. Additional studies are needed to evaluate this concept for managing Fontan failure.

Funder

American Heart Association National Innovation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3