Prediction for future occurrence of type A aortic dissection using computational fluid dynamics

Author:

Hohri Yu1ORCID,Numata Satoshi1,Itatani Keiichi1,Kanda Keiichi1,Yamazaki Sachiko1,Inoue Tomoya1,Yaku Hitoshi1ORCID

Affiliation:

1. Department of Cardiovascular Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan

Abstract

Abstract OBJECTIVES The actual underlying mechanisms of acute type A aortic dissection (AAAD) are not well understood. The present study aimed to elucidate the mechanism of AAAD using computational fluid dynamics (CFD) analysis. METHODS We performed CFD analysis using patient-specific computed tomography imaging in 3 healthy control cases and 3 patients with AAAD. From computed tomography images, we made a healthy control model or pre-dissection model for CFD analysis. Pulsatile cardiac flow during one cardiac cycle was simulated, and a three-dimensional flow streamline was visualized to evaluate flow velocity, wall shear stress and oscillatory shear index (OSI). RESULTS In healthy controls, the transvalvular aortic flow was parallel to the ascending aorta. There was no spotty high OSI area at the ascending aorta. In pre-dissection patients, accelerated transvalvular aortic flow was towards the posterolateral ascending aorta. The vortex flow was observed on the side of the lesser curvature in mid-systole and expanded throughout the entire ascending aorta during diastole. Systolic wall shear stress was high due to the accelerated aortic blood flow on the side of the greater curvature of the ascending aorta. On the side of the lesser curvature, high OSI areas were observed around the vortex flow. In all pre-dissection cases, a spotty high OSI area was in close proximity to the actual primary entry site of the future AAAD. CONCLUSIONS The pre-onset high OSI area with vortex flow is closely associated with the future primary entry site. Therefore, we can elucidate the mechanism of AAAD with CFD analysis.

Publisher

Oxford University Press (OUP)

Subject

Cardiology and Cardiovascular Medicine,Pulmonary and Respiratory Medicine,General Medicine,Surgery

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3