Impact of tricuspid annular size reduction on right ventricular function, geometry and strain†

Author:

Malinowski Marcin12,Jaźwiec Tomasz13,Goehler Matthew1,Bush Jared1,Quay Nathan1,Ferguson Haley1,Rausch Manuel K45,Timek Tomasz A1

Affiliation:

1. Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI, USA

2. Department of Cardiac Surgery, Medical University of Silesia, School of Medicine in Katowice, Katowice, Poland

3. Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia in Katowice, Silesian Centre for Heart Disease, Zabrze, Poland

4. Department of Aerospace Engineering and Engineering Mechanics, Institute for Computational Engineering and Science, University of Texas at Austin, Austin, TX, USA

5. Department of Biomedical Engineering, Institute for Computational Engineering and Science, University of Texas at Austin, Austin, TX, USA

Abstract

Abstract OBJECTIVES Restrictive tricuspid annuloplasty is a clinically accepted approach to treat functional tricuspid regurgitation. We set out to investigate the effect of varying degrees of tricuspid annular reduction on the right ventricular (RV) function, geometry and strain. METHODS Eight, healthy sheep (45 ± 4 kg) had 6 sonomicrometry crystals implanted around the tricuspid annulus and 20 onto the epicardium of the right ventricle defining 3 free wall regions: basal, mid and lower. A polypropylene annuloplasty suture was placed around the tricuspid annulus and externalized to an epicardial tourniquet. Simultaneous echocardiographic, haemodynamic and sonomicrometry data were acquired at baseline and during 5 consecutive annular reduction steps (TAR 1–5) with successive (5–7 mm) suture cinching. RV free wall circumferential, longitudinal and areal cardiac and interventional strains, RV radius of curvature (ROC), cross-sectional area and tricuspid annular dimensions were calculated from 3-dimensional crystal coordinates. RESULTS TAR 1–5 resulted in 19 ± 15%, 35 ± 15%, 51 ± 15%, 60 ± 15% and 68 ± 13% tricuspid annular area reduction, respectively. TAR 1 and 2 had minimal influence on the RV function, RV-ROC and strains. TAR 4 and 5 decreased RV-ROC in basal and mid-regions, but reduced the RV cross-sectional area change (from 19 ± 4% at baseline to 14 ± 3% and 13 ± 2%, respectively, P < 0.001) and circumferential and areal strains. TAR 3 significantly decreased free wall RV-ROC from 44.0 ± 1.5 to 42.6 ± 2.4 mm P < 0.001 at the RV base but maintained the regional ventricular function and strains. CONCLUSIONS In healthy ovine hearts, a tricuspid annular area reduction of ∼50% provides optimal conditions for reducing RV-ROC while maintaining regional RV function and strain patterns.

Funder

Meijer Heart and Vascular Institute at Spectrum Health

Publisher

Oxford University Press (OUP)

Subject

Cardiology and Cardiovascular Medicine,Pulmonary and Respiratory Medicine,General Medicine,Surgery

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3