When False-Positives Arise: Troubleshooting a SARS-Coronavirus-2 (SARS-CoV-2) Detection Assay on a Semi-Automated Platform

Author:

Hampel Kenneth J1,Gerrard Diana L1,Francis Denise1,Armstrong Jordan2,Cameron Margaret1,Ostafin Alexa1,Mahoney Briege1,Malik Miles1,Sidiropoulos Nikoletta1

Affiliation:

1. Department of Pathology and Laboratory Medicine, University of Vermont Medical Center , Burlington, VT , United States

2. Technical Assistance Center for Biotek Products, Agilent Technologies Inc. , Winooski, VT , United States

Abstract

Abstract Background During the COVID-19 pandemic, many molecular diagnostic laboratories performed high-throughput SARS-CoV-2 testing often with implementation of automated workflows. In parallel, vaccination campaigns resulted increasingly in specimens from fully vaccinated patients, with resultant clinical inquiries regarding positive results in this patient population. This prompted a quality improvement initiative to investigate the semi-automated testing workflow for false-positive results. The troubleshooting workflow is described and procedural improvements are outlined that serve as a resource for other molecular diagnostic laboratories that need to overcome testing anomalies in a semi-automated environment. Methods This workflow utilized the MagMax-96 Viral RNA kit and the CDC 2019-nCoV RT-qPCR Panel on the Agilent Bravo Liquid-Handler (Bravo). Screening of the environment, personnel, and the mechanical performance of instrumentation using low Ct checkerboard challenges was executed to identify sources of cross-contamination. Evaluation of the assay and reporting design was conducted. Results Specimen contamination was observed during the viral extraction process on the Bravo. Changes to the program reduced plate contamination by 50% and importantly revealed consistent hallmarks of contaminated samples. We adjusted the reporting algorithm using these indicators of false positives. False positives that were identified made up 0.11% of the 45 000+ tests conducted over the following 8 months. Conclusions These adjustments provided confident and quality results while maintaining turnaround time for patients and pandemic-related public health initiatives. This corrected false-positive rate is concordant with previously published studies from diagnostic laboratories utilizing automated systems and may be considered a laboratory performance standard for this type of testing.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3