Affiliation:
1. Washington University in St. Louis School of Medicine, Department of Pathology and Immunology , St. Louis, MO 63110 , United States
Abstract
AbstractBackgroundMethods of machine learning provide opportunities to use real-world data to solve complex problems. Applications of these methods in laboratory medicine promise to increase diagnostic accuracy and streamline laboratory operations leading to improvement in the quality and efficiency of healthcare delivery. However, machine learning models are vulnerable to learning from undesirable patterns in the data that reflect societal biases. As a result, irresponsible application of machine learning may lead to the perpetuation, or even amplification, of existing disparities in healthcare outcomes.ContentIn this work, we review what it means for a model to be unfair, discuss the various ways that machine learning models become unfair, and present engineering principles emerging from the field of algorithmic fairness. These materials are presented with a focus on the development of machine learning models in laboratory medicine.SummaryWe hope that this work will serve to increase awareness, and stimulate further discussion, of this important issue among laboratorians as the field moves forward with the incorporation of machine learning models into laboratory practice.
Publisher
Oxford University Press (OUP)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献