Effective annotation for the automatic vectorization of cadastral maps

Author:

Petitpierre Remi1ORCID,Guhennec Paul2

Affiliation:

1. Institute for Area and Global Studies, EPFL , Lausanne, Switzerland

2. Digital Humanities Laboratory, EPFL , Lausanne, Switzerland

Abstract

Abstract The great potential brought by large-scale data in the humanities is still hindered by the time and technicality required for making documents digitally intelligible. Within urban studies, historical cadasters have been hitherto largely under-explored despite their informative value. Powerful and generic technologies, based on neural networks, to automate the vectorization of historical maps have recently become available. However, the transfer of these technologies is hampered by the scarcity of interdisciplinary exchanges and a lack of practical literature destinated to humanities scholars, especially on the key step of the pipeline: the annotation. In this article, we propose a set of practical recommendations based on empirical findings on document annotation and automatic vectorization, focusing on the example case of historical cadasters. Our recommendations are generic and easily applicable, based on a solid experience on concrete and diverse projects.

Funder

Swiss National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Linguistics and Language,Language and Linguistics,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3