Spatial dependency in child malnutrition across 640 districts in India: need for context-specific planning and interventions

Author:

Vennam Thirumal Reddy12,Agnihotri Satish B1,Chinnasamy Pennan12ORCID

Affiliation:

1. Centre for Technology Alternatives for Rural Areas , Indian Institute of Technology Bombay, Mumbai 400076 , India

2. Rural Data Research and Analysis (RuDRA) Lab , Indian Institute of Technology Bombay, Mumbai 400076 , India

Abstract

Abstract Background Child malnutrition remains a matter of concern in India as the current levels are high and the decline is slow. National Family Health Survey (NFHS–4, 2015-16) data, for the first time, provides credible, good quality data at district level on social, household and health characteristics. Methods Techniques of spatial analysis on data in respect of 640 districts were used to identify spatial characteristics of the nutrition levels for children in the 0–60-month age group. Further, the principal component analysis (PCA) was used to identify 7 important correlates of the malnutrition out of 21 relevant components provided in the NFHS-4. The paper further uses three techniques, ordinary least squares (OLS), spatial lag model (SLM) and spatial error model (SEM) to assess the strength of correlation between the malnutrition levels and the shortlisted correlates. Results The use of SLM and SEM shows improvement in the strength of the association (high R-square) compared to OLS. Women's height and Iodized salt in stunting, child anaemia in wasting, women's height and child anaemia in underweight were found to be significant factors (P < 0.01) along with spatial autoregressive constant. Conclusions Such analysis, in combination with PCA, has shown to be more effective in prioritizing the programme interventions for tackling child malnutrition.

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health,General Medicine

Reference29 articles.

1. Poverty, child undernutrition and morbidity: new evidence from India;Nandy;Bull World Health Organ,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3