Mechanism and implications of the post-seismic deformation following the 2021 Mw 7.4 Maduo (Tibet) earthquake

Author:

Chen Fei1ORCID,Diao Faqi1ORCID,Haghighi Mahmud Haghshenas2ORCID,Wang Yuebing3,Zhu Yage1,Wang Rongjiang1,Xiong Xiong1ORCID

Affiliation:

1. Hubei Subsurface Multi-Scale Imaging Key Laboratory, School of Geophysics and Geomatics, China University of Geosciences , Wuhan 430074 , China

2. Institute of Photogrammetry and GeoInformation, Leibniz University Hannover , Hannover 30167 , Germany

3. China Earthquake Networks Center , Beijing 100032 , China

Abstract

SUMMARY A major earthquake shook the Chinese county of Maduo, located in the Songpan-Ganzi terrane on the Tibetan Plateau, on 21 May 2021. Here, we investigate the post-seismic deformation process of this event, with the aim to understand the fault geometry, friction behaviour and regional rheology. To keep the self-consistency between co- and post-seismic deformation models, we first constrain the fault geometry and coseismic slip model of this event, which are directly used in modelling the post-seismic deformation. The coseimsic slip model reveals that the majority of coseismic slip is confined at the middle (3–15 km) of the brittle layer, leading to significant shallow slip deficit. Secondly, we obtain the post-seismic deformation in the first 450 d following the 2021 Maduo earthquake using the GPS and InSAR displacement time-series data. Thirdly, a combined model incorporating afterslip and viscoelastic relaxation is built to explain the observed post-seismic deformation. Our results suggest that the viscoelastic relaxation effect should be considered in the observation period, in order to avoid the unphysical deep afterslip in the ductile lower crustal layer. Combined analysis on viscosities inferred from this study and previous studies suggests a weak lower crust with steady-state viscosity of 1018–1019 Pa s beneath the Songpan-Ganzi terrane, which may give rise to the distributed shear deformation and the development of subparallel secondary faults within the terrane. Besides, the inferred afterslip on uppermost patches of the middle fault segment suggests a rate-strengthening frictional behaviour that may be related to the coseismic slip deficit and rupture arrest of the Maduo earthquake.

Funder

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3