On accounting for the effects of crust and uppermost mantle structure in global scale full-waveform inversion

Author:

Chen Li-Wei12ORCID,Romanowicz Barbara134

Affiliation:

1. Berkeley Seismological Laboratory, University of California , Berkeley, CA 94720, . USA

2. Lawrence Berkeley National Laboratory , Berkeley, CA 94720 , USA

3. College de France , 75005 Paris , France

4. Institut de Physique du Globe , CEDEX 05, 75005 Paris , France

Abstract

SUMMARY Fundamental mode surface wave data have often been used to construct global shear velocity models of the upper mantle under the so-called ‘path average approximation’, an efficient approach from the computational point of view. With the advent of full-waveform inversion and numerical wavefield computations, such as afforded by the spectral element method, accounting for the effects of the crust accurately becomes challenging. Here, we assess the merits of accounting for crustal and uppermost mantle effects on surface and body waveforms using fundamental mode dispersion data and a smooth representation of the shallow structure. For this we take as reference a model obtained by full-waveform inversion and wavefield computations using the spectral element method, model SEMUCB-WM1 and compare the waveform fits of synthetics to different parts of three component observed teleseismic records, in the period band 32–300 s for body waves and 40–300 s for surface waves and their overtones for three different models. The latter are: a dispersion-only based model (model Disp_20s_iter5), and two models modified from SEMUCB-WM1 by successively replacing the top 200 km (model Merged _200 km) and top 80 km (model Merged _80 km), respectively, by a model constrained solely by fundamental mode surface wave dispersion data between periods of 20 and 150 s. The crustal part of these three models (resp. SEMUCB-WM1) is constrained from dispersion data in the period range 20–60 s (resp. 25–60 s), using the concept of homogenization which is tailored to simplify complex geological features, enhancing the computational efficiency of our seismic modelling. We evaluate the fits to observed waveforms provided by these three models compared to those of SEMUCB-WM1 by computing three component synthetics using the spectral element method for five globally distributed events recorded at 200+stations, using several measures of misfit. While fits to waveforms for model 3 are similar to those for SEMUCB-WM1, the other two models provide increasingly poorer fits as the distance travelled by the corresponding seismic wave increases and/or as it samples deeper in the mantle. In particular, models 1 and 2 are biased towards fast shear velocities, on average. Our results suggest that, given a comparable frequency band, models constructed using fundamental mode surface wave data alone and the path average approximation, fail to provide acceptable fits to the corresponding waveforms. However, the shallow part of such a 3-D radially anisotropic model can be a good starting model for further full waveform inversion using numerical wavefield computations. Moreover, the shallow part of such a model, including its smooth crustal model, and down to a maximum depth that depends on the frequency band considered, can be fixed in full-waveform inversion iterations for deeper structure. This can save significant computational time when higher resolution is sought in the deeper mantle. In the future, additional constraints for the construction of the homogenized model of the crust can be implemented from independent short period studies, either globally or regionally.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3