Physics-guided deep learning-based inversion for airborne electromagnetic data

Author:

Wu Sihong12ORCID,Huang Qinghua12,Zhao Li12ORCID

Affiliation:

1. Department of Geophysics, School of Earth and Space Sciences, Peking University , Beijing 100871 , China

2. Hebei Hongshan National Observatory on Thick Sediments and Seismic Hazards, Peking University , Beijing 100871 , China

Abstract

SUMMARY The Earth's subsurface structure provides critical insights into sustainable resource management and geologic evolution. The airborne electromagnetic (AEM) method is an efficient data acquisition technique and can be used to image the underground resistivity structure with high spatial resolution. However, inversion of the increasingly huge volume of AEM data poses a heavy computational burden. In this study, we develop a hybrid deep learning-based approach by using the physics-guided neural network (PGNN) which incorporates the governing physical laws into the loss function to solve the AEM inverse problem. The PGNN integrates the strength of data-driven method for representation learning with electromagnetic laws and allows for the underlying physical constraints to be strictly satisfied. We validate the effectiveness of our approach using both synthetic and field datasets. Compared with the classic Gauss–Newton method, our PGNN inversion system shows strong robustness against multiple noise sources and reduces the risk of being trapped in local extrema. Moreover, the PGNN-inverted results are physically more consistent with the AEM observations compared to the purely data-driven approach. Application to the field AEM data from Northern Australia demonstrates that the PGNN-based inversion framework effectively estimates the subsurface electrical properties with considerable lateral continuity and significantly higher efficiency, completing the inversion of more than 2734000 AEM soundings taking only minutes on a common PC. Our proposed PGNN-based method shows great promise for large-scale underground resistivity imaging, and the well-identified subsurface resistivity structure can effectively improve our understanding of resource distributions and geological hazards.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3