Terraced slope metasurface in granular media

Author:

Aravantinos-Zafiris N1ORCID,Chondrogiannis K A2,Thomsen H R2ORCID,Dertimanis V K2,Colombi A3,Sigalas M M4,Chatzi E2

Affiliation:

1. Department of Environment, Ionian University , Zakynthos 29100 , Greece

2. ETH Zurich, Department of Civil, Environmental and Geomatic Engineering , Stefano-Franscini-Platz 5, CH-8093 Zurich , Switzerland

3. Institute for Building Technology and Process, IBP, ZHAW School of Architecture, Design and Civil Engineering , Tössfeldstrasse 11 8400, Winterthur , Switzerland

4. Department of Materials Science, University of Patras , Patras 26504 , Greece

Abstract

SUMMARY In this work, the propagation and attenuation of vertically polarized surface waves when interacting with terraced slopes is studied experimentally and numerically. To validate the devised simulation, a laboratory-scale physical model is tested in order to examine the attenuation properties of this well-known artificial landform. The experiment involves formation of a terraced slope, in a laboratory setup, via use of an unconsolidated granular medium made of silica microbeads. This granular medium exhibits a gravity-induced power-law stiffness profile, resulting in a depth-dependent velocity profile. A piezoelectric actuator was used to excite vertically polarized surface acoustic modes localized near the surface of the medium. The three components of the particle velocity field of these modes were measured by means of a 3-D laser Doppler vibrometer. In accordance with the terraced slope, a simple inclined plane was further tested to investigate and highlight the differences in terms of wave propagation along these two different ground formations. The results of this research provide significant experimental evidence that the terraced slopes form mechanisms which attenuate low-frequency surface waves, thus acting as metasurfaces. This work suggests the use of laboratory-scale physical models to investigate the wave propagation in different landforms, which extend beyond typical horizontal ground morphologies, and which could be linked to atypical wave propagation properties, possibly even influencing propagation of seismic waves.

Funder

Eidgenössische Technische Hochschule Zürich

European Commission

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3