Complex rupture evolution of the 2007 Martinique earthquake: a non-double-couple event in the Caribbean Sea

Author:

Ohara Kenta1ORCID,Yagi Yuji2ORCID,Okuwaki Ryo23ORCID

Affiliation:

1. Graduate School of Science and Thechnology, University of Tsukuba , Tsukuba, Ibaraki 305-8572 , Japan

2. Faculty of Life and Environmental Sciences, University of Tsukuba , Tsukuba, Ibaraki 305-8572 , Japan

3. Mountain Science Center, University of Tsukuba , Tsukuba, Ibaraki 305-8572 , Japan

Abstract

SUMMARY A large non-double-couple component of a tectonic earthquake indicates that its rupture likely was complex and likely involved multiple faults. Detailed source models of such earthquakes can add to our understanding of earthquake source complexity. The 2007 Martinique earthquake in the Caribbean Sea is one of the largest recent earthquakes with a known large non-double-couple component. It was an intermediate depth intraslab earthquake within the South American plate where it is subducting beneath the Caribbean plate. We applied potency density tensor inversion (PDTI) to teleseismic P waves generated by the 2007 Martinique earthquake to model its source processes and focal mechanism distribution. We identified two focal mechanisms: a strike-slip mechanism with a north–south tension axis (T-axis), and a downdip extension (DDE) mechanism with an east–west T-axis. Rupture by the DDE mechanism was predominant in the northern part of the source region and strike-slip rupture in the southern part. These two focal mechanisms had approximately parallel pressure axes (P-axes) and approximately orthogonal T-axes. The seismic moments released by both types of rupture were almost equal. These results indicate that the 2007 Martinique earthquake had a large non-double-couple component. We identified five subevents with two predominant directions of rupture propagation: two strike-slip subevents propagated to the southeast and three DDE subevents propagated to the east. Although the directions of propagation were consistent for each focal mechanism, each subevent appears to have occurred in isolation. For example, the rupture of one DDE subevent propagated from the edge of the source region back towards the hypocentre. Complex ruptures that include multiple subevents may be influenced by high pore fluid pressure associated with slab dehydration. Our results show that PDTI can produce stable estimates of complex seismic source processes and provide useful information about the sources of complex intermediate depth intraslab earthquakes for which fault geometry assumptions are difficult.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3