Optimized estimation of marine deflection of the vertical from multibeam laser altimeter data of ICESat-2

Author:

Peng Huihui1,Liu Xin1,Li Zhen1,Wei Xuyang1,Fan Xin1,Guo Jinyun1ORCID

Affiliation:

1. College of Geodesy and Geomatics, Shandong University of Science and Technology , Qingdao 266590 , China

Abstract

SUMMARY Satellite altimetry data, with its increasing density and quality, has become the primary source for marine deflection of the vertical (DOV) and gravity anomaly modelling. Limited by orbital inclinations, the precision of the meridian component of the gridded deflection of the vertical (GDOV) calculated by traditional altimetry satellites is significantly better than that of the prime vertical component, and the excessive precision difference between these two components restricts the inversion precision of marine gravity anomaly model. The study of cross-track deflection of the vertical (CTDOV) is enabled by the multibeam synchronous observation mode of the new laser altimetry satellite, Ice, Cloud and Land Elevation Satellite-2 (ICESat-2). Based on the remove-restore method, residual geoid gradients are first calculated in this paper using three approaches: along-track (A-T), cross-track (C-T) and an integration of along-track and cross-track. Vertical deflections are then computed on a 1′ × 1′ grid using the least squares collocation (LSC) method, and the precision is verified against the SIO V32.1_DOV model. An optimized combination is proposed to address the issue of precision differences between the meridian and prime vertical components, and to enhance the precision of DOV inversion. A new DOV combination is formed by combining the meridian component from along-track deflection of the vertical (ATDOV) with the prime vertical component from cross-track deflection of the vertical (CTDOV) based on the remove-restore method. The Philippine Sea (0°–35°N, 120°–150°E) is selected as the test area to verify the feasibility of the optimized combination. The results indicate that the optimized combination of the meridian and prime vertical components achieved test precision of 2.63 and 3.33 μrad, respectively, when compared against the SIO V32.1_DOV model. The precision gap between the components is effectively narrowed by this approach, which maintains the precision of the meridian component and enhances that of the prime vertical component, thereby achieving optimal inversion precision for gravity anomalies.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive OPTICS Algorithm Denoising ICESat-2 Laser Photon Data;IEEE Geoscience and Remote Sensing Letters;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3