Unravelling the excitation mechanism of very long-period (VLP) tremors in the Gulf of Guinea: evidence for vibrations of thin surface crustal plates

Author:

Xia Yingjie123ORCID,Feng Xuping12,Chen Xiaofei12

Affiliation:

1. Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology, Southern University of Science and Technology , Shenzhen 518055 , China

2. Department of Earth and Space Sciences, Southern University of Science and Technology , Shenzhen 518055 , China

3. Department of Astronautical Science and Mechanics, Harbin Institute of Technology , Harbin 150006 , China

Abstract

SUMMARY The Gulf of Guinea exhibits a continuous emission of narrow-band and long-period signals (16, 26 and 27 s) on teleseismic records, yet the underlying excitation mechanism remains unclear. This study establishes a connection between these tremors and the vibration of thin, decoupled crustal plates at unexplored volcanoes in the gulf. We first formulate the damped plate oscillation equation, by incorporating the vibration of the thin surface crustal plate and magma flow in the subsurface sill. The findings reveal that a fundamental-mode vibration with a period of several dozen seconds can be induced by a crustal plate that is less than 1.0 km thick but extends over tens of kilometres in both length and width, given a subsurface sill depth exceeding 10.0 cm. The thin plate hypothesis also allows for excitation of a few overtone modes, but such waves in higher frequencies diminish over long distances, leaving only the monotonous fundamental-mode vibration at teleseismic stations. The long duration of Guinea tremors at each recurrence is attributed to the presence of low viscosity basaltic magma, which influences the damping factor. Direct wave loads at the shallow gulf serve as the primary vibration source, accounting for seasonal variations and recurring patterns. Sporadic energy bursts may also occur due to large storms. Radiation patterns of Guinea tremors are linked to the geometric structure of the thin plate. Our theoretical estimates of tremor spectra closely align with observed data, confirming the model’s accuracy in capturing reported Guinea tremor characteristics. This study provides valuable insights into the origins of very long-period tremors at continental volcanoes.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3