Deep learning for deep earthquakes: insights from OBS observations of the Tonga subduction zone

Author:

Xi Ziyi1ORCID,Wei S Shawn21ORCID,Zhu Weiqiang3,Beroza Gregory C4,Jie Yaqi21,Saloor Nooshin2

Affiliation:

1. Department of Computational Mathematics, Science and Engineering, Michigan State University , East Lansing, MI 48824 , USA

2. Department of Earth and Environmental Sciences, Michigan State University , East Lansing, MI 48824 , USA

3. Department of Earth & Planetary Science, University of California , Berkeley, Berkeley, CA 94720 , USA

4. Department of Geophysics, Stanford University , Stanford, CA 94305 , USA

Abstract

SUMMARY Applications of machine learning in seismology have greatly improved our capability of detecting earthquakes in large seismic data archives. Most of these efforts have been focused on continental shallow earthquakes, but here we introduce an integrated deep-learning-based workflow to detect deep earthquakes recorded by a temporary array of ocean-bottom seismographs (OBSs) and land-based stations in the Tonga subduction zone. We develop a new phase picker, PhaseNet-TF, to detect and pick P- and S-wave arrivals in the time–frequency domain. The frequency-domain information is critical for analysing OBS data, particularly the horizontal components, because they are contaminated by signals of ocean-bottom currents and other noise sources in certain frequency bands. PhaseNet-TF shows a much better performance in picking S waves at OBSs and land stations compared to its predecessor PhaseNet. The predicted phases are associated using an improved Gaussian Mixture Model Associator GaMMA-1D and then relocated with a double-difference package teletomoDD. We further enhance the model performance with a semi-supervised learning approach by iteratively refining labelled data and retraining PhaseNet-TF. This approach effectively suppresses false picks and significantly improves the detection of small earthquakes. The new catalogue of Tonga deep earthquakes contains more than 10 times more events compared to the reference catalogue that was analysed manually. This deep-learning-enhanced catalogue reveals Tonga seismicity in unprecedented detail, and better defines the lateral extent of the double-seismic zone at intermediate depths and the location of four large deep-focus earthquakes relative to background seismicity. It also offers new potential for deciphering deep earthquake mechanisms, refining tomographic models, and understanding of subduction processes.

Funder

National Science Foundation

Michigan State University

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3