Gradient-based joint inversion of point-source moment tensor and station-specific time-shifts

Author:

Phạm Thanh-Son1ORCID

Affiliation:

1. Research School of Earth Sciences, The Australian National University , Canberra, Acton, ACT 0200 , Australia

Abstract

SUMMARY The misalignment of the observation and predicted waveforms in regional moment tensor inversion is mainly due to seismic models’ incomplete representation of the Earth's heterogeneities. Current moment tensor inversion techniques, allowing station-specific time-shifts to account for the model error, are computationally expensive. Here, we propose a gradient-based method to jointly invert moment-tensor parameters, centroid depth and unknown station-specific time-shifts utilizing the modern functionalities in deep learning frameworks. A $L_2^2$ misfit function between predicted synthetic and time-shifted observed seismograms is defined in the spectral domain, which is differentiable to all unknowns. The inverse problem is solved by minimizing the misfit function with a gradient descent algorithm. The method's feasibility, robustness and scalability are demonstrated using synthetic experiments and real earthquake data in the Long Valley Caldera, California. This work presents an example of fresh opportunities to apply advanced computational infrastructures developed in deep learning to geophysical problems.

Funder

Air Force Research Laboratory

Australian National University

Australian Research Council

Australian Government

Publisher

Oxford University Press (OUP)

Reference45 articles.

1. Full moment tensor analysis of nuclear explosions in North Korea;Alvizuri;Seismol. Res. Lett.,2018

2. Sequential Monte Carlo samplers;Del Moral;J. R. Stat. Soc., B: Stat. Methodol.,2006

3. Broadband modelling of local earthquakes;Dreger;Bull. seism. Soc. Am.,1990

4. Dilational processes accompanying earthquakes in the Long Valley Caldera;Dreger;Science,2000

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3