Mapping bedrock topography and detecting blind faults using the fundamental resonance of microtremor: a case study of the Pohang Basin, southeastern Korea

Author:

Kang Su Young1

Affiliation:

1. Institute of Geohazard Research, Pusan National University , Busan, 46241 , Korea

Abstract

SUMMARY The Pohang Basin sustained the most extensive seismic damage in the history of instrumental recording in Korea due to the 2017 Mw 5.5 earthquake. The pattern of damage shows marked differences from a radial distribution, suggesting important contributions by local site effects. Our understanding of these site effects and their role in generating seismic damage within the study area remains incomplete, which indicates the need for a thorough exploration of subsurface information, including the thickness of soil to bedrock and basin geometry, in the Pohang Basin. We measured the depth to bedrock in the Pohang Basin using dense ambient noise measurements conducted at 698 sites. We propose a model of basin geometry based on depths and dominant frequencies derived from the horizontal-to-vertical spectral ratio (HVSR) of microtremor at 698 sites. Most microseismic measurements exhibit one or more clear HVSR peak(s), implying one or more strong impedance contrast(s), which are presumed to represent the interface between the basement and overlying basin-fill sediments at each measurement site. The ambient seismic noise induces resonance at frequencies as low as 0.32 Hz. The relationship between resonance frequency and bedrock depth was derived using data from 27 boreholes to convert the dominant frequencies measured at stations adjacent to the boreholes into corresponding depths to the strong impedance contrast. The relationship was then applied to the dominant frequencies to estimate the depth to bedrock over the whole study area. Maps of resonance frequency and the corresponding depth to bedrock for the study area show that the greatest depths to bedrock are in the coastal area. The maps also reveal lower fundamental frequencies in the area west of the Gokgang Fault. The results indicate a more complex basin structure than previously proposed based on a limited number of direct borehole observations and surface geology. The maps and associated profiles across different parts of the study area show pronounced changes in bedrock depth near inferred blind faults proposed in previous studies, suggesting that maps of bedrock depth based on the HVSR method can be used to infer previously unknown features, including concealed or blind faults that are not observed at the surface.

Funder

Korean Meteorological Administration Research Development Program

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3